| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elovmptnn0wrd.o |  |-  O = ( v e. _V , y e. _V |-> ( n e. NN0 |-> { z e. Word v | ph } ) ) | 
						
							| 2 | 1 | elovmpt3imp |  |-  ( Z e. ( ( V O Y ) ` N ) -> ( V e. _V /\ Y e. _V ) ) | 
						
							| 3 |  | wrdexg |  |-  ( V e. _V -> Word V e. _V ) | 
						
							| 4 | 3 | adantr |  |-  ( ( V e. _V /\ Y e. _V ) -> Word V e. _V ) | 
						
							| 5 | 2 4 | syl |  |-  ( Z e. ( ( V O Y ) ` N ) -> Word V e. _V ) | 
						
							| 6 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 7 | 5 6 | jctil |  |-  ( Z e. ( ( V O Y ) ` N ) -> ( NN0 e. _V /\ Word V e. _V ) ) | 
						
							| 8 |  | eqidd |  |-  ( ( v = V /\ y = Y ) -> NN0 = NN0 ) | 
						
							| 9 |  | wrdeq |  |-  ( v = V -> Word v = Word V ) | 
						
							| 10 | 9 | adantr |  |-  ( ( v = V /\ y = Y ) -> Word v = Word V ) | 
						
							| 11 | 1 8 10 | elovmpt3rab1 |  |-  ( ( NN0 e. _V /\ Word V e. _V ) -> ( Z e. ( ( V O Y ) ` N ) -> ( ( V e. _V /\ Y e. _V ) /\ ( N e. NN0 /\ Z e. Word V ) ) ) ) | 
						
							| 12 | 7 11 | mpcom |  |-  ( Z e. ( ( V O Y ) ` N ) -> ( ( V e. _V /\ Y e. _V ) /\ ( N e. NN0 /\ Z e. Word V ) ) ) |