| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdf |  |-  ( F e. Word S -> F : ( 0 ..^ ( # ` F ) ) --> S ) | 
						
							| 2 |  | lencl |  |-  ( F e. Word S -> ( # ` F ) e. NN0 ) | 
						
							| 3 |  | nn0z |  |-  ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) | 
						
							| 4 |  | fzossrbm1 |  |-  ( ( # ` F ) e. ZZ -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( # ` F ) e. NN0 -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 6 |  | fssres |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) --> S /\ ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) -> ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) : ( 0 ..^ ( ( # ` F ) - 1 ) ) --> S ) | 
						
							| 7 | 5 6 | sylan2 |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) --> S /\ ( # ` F ) e. NN0 ) -> ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) : ( 0 ..^ ( ( # ` F ) - 1 ) ) --> S ) | 
						
							| 8 |  | iswrdi |  |-  ( ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) : ( 0 ..^ ( ( # ` F ) - 1 ) ) --> S -> ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) e. Word S ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) --> S /\ ( # ` F ) e. NN0 ) -> ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) e. Word S ) | 
						
							| 10 | 1 2 9 | syl2anc |  |-  ( F e. Word S -> ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) e. Word S ) |