| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdf | ⊢ ( 𝐹  ∈  Word  𝑆  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) | 
						
							| 2 |  | lencl | ⊢ ( 𝐹  ∈  Word  𝑆  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 3 |  | nn0z | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 4 |  | fzossrbm1 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℤ  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 6 |  | fssres | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆  ∧  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ⟶ 𝑆 ) | 
						
							| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ⟶ 𝑆 ) | 
						
							| 8 |  | iswrdi | ⊢ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ⟶ 𝑆  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  𝑆 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  𝑆 ) | 
						
							| 10 | 1 2 9 | syl2anc | ⊢ ( 𝐹  ∈  Word  𝑆  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  𝑆 ) |