| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdf |
⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) |
| 2 |
|
lencl |
⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 3 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 4 |
|
fzossrbm1 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 5 |
3 4
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 6 |
|
fssres |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ∧ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑆 ) |
| 7 |
5 6
|
sylan2 |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑆 ) |
| 8 |
|
iswrdi |
⊢ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑆 → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word 𝑆 ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word 𝑆 ) |
| 10 |
1 2 9
|
syl2anc |
⊢ ( 𝐹 ∈ Word 𝑆 → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word 𝑆 ) |