| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl |  |-  ( F e. Word S -> ( # ` F ) e. NN0 ) | 
						
							| 2 |  | wrdf |  |-  ( F e. Word S -> F : ( 0 ..^ ( # ` F ) ) --> S ) | 
						
							| 3 |  | ffn |  |-  ( F : ( 0 ..^ ( # ` F ) ) --> S -> F Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 4 |  | nn0z |  |-  ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) | 
						
							| 5 |  | fzossrbm1 |  |-  ( ( # ` F ) e. ZZ -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( # ` F ) e. NN0 -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 9 |  | fnssresb |  |-  ( F Fn ( 0 ..^ ( # ` F ) ) -> ( ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) Fn ( 0 ..^ ( ( # ` F ) - 1 ) ) <-> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) -> ( ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) Fn ( 0 ..^ ( ( # ` F ) - 1 ) ) <-> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 11 | 8 10 | mpbird |  |-  ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) -> ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) Fn ( 0 ..^ ( ( # ` F ) - 1 ) ) ) | 
						
							| 12 |  | hashfn |  |-  ( ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) Fn ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( # ` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( # ` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) | 
						
							| 14 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 15 |  | nn0sub2 |  |-  ( ( 1 e. NN0 /\ ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. NN0 ) | 
						
							| 16 | 14 15 | mp3an1 |  |-  ( ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. NN0 ) | 
						
							| 17 |  | hashfzo0 |  |-  ( ( ( # ` F ) - 1 ) e. NN0 -> ( # ` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) = ( ( # ` F ) - 1 ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( # ` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) = ( ( # ` F ) - 1 ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) -> ( # ` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) = ( ( # ` F ) - 1 ) ) | 
						
							| 20 | 13 19 | eqtrd |  |-  ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) ) | 
						
							| 21 | 20 | ex |  |-  ( F Fn ( 0 ..^ ( # ` F ) ) -> ( ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) ) ) | 
						
							| 22 | 2 3 21 | 3syl |  |-  ( F e. Word S -> ( ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) ) ) | 
						
							| 23 | 1 22 | mpand |  |-  ( F e. Word S -> ( 1 <_ ( # ` F ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) ) |