Step |
Hyp |
Ref |
Expression |
1 |
|
elovolm.1 |
|- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
2 |
|
elovolmr.2 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
3 |
|
elovolmlem |
|- ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
4 |
|
id |
|- ( f = F -> f = F ) |
5 |
4
|
eqcomd |
|- ( f = F -> F = f ) |
6 |
5
|
coeq2d |
|- ( f = F -> ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. f ) ) |
7 |
6
|
seqeq3d |
|- ( f = F -> seq 1 ( + , ( ( abs o. - ) o. F ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) ) |
8 |
2 7
|
eqtrid |
|- ( f = F -> S = seq 1 ( + , ( ( abs o. - ) o. f ) ) ) |
9 |
8
|
rneqd |
|- ( f = F -> ran S = ran seq 1 ( + , ( ( abs o. - ) o. f ) ) ) |
10 |
9
|
supeq1d |
|- ( f = F -> sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) |
11 |
10
|
biantrud |
|- ( f = F -> ( A C_ U. ran ( (,) o. f ) <-> ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
12 |
|
coeq2 |
|- ( f = F -> ( (,) o. f ) = ( (,) o. F ) ) |
13 |
12
|
rneqd |
|- ( f = F -> ran ( (,) o. f ) = ran ( (,) o. F ) ) |
14 |
13
|
unieqd |
|- ( f = F -> U. ran ( (,) o. f ) = U. ran ( (,) o. F ) ) |
15 |
14
|
sseq2d |
|- ( f = F -> ( A C_ U. ran ( (,) o. f ) <-> A C_ U. ran ( (,) o. F ) ) ) |
16 |
11 15
|
bitr3d |
|- ( f = F -> ( ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> A C_ U. ran ( (,) o. F ) ) ) |
17 |
16
|
rspcev |
|- ( ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ A C_ U. ran ( (,) o. F ) ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
18 |
3 17
|
sylanbr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
19 |
1
|
elovolm |
|- ( sup ( ran S , RR* , < ) e. M <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
20 |
18 19
|
sylibr |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> sup ( ran S , RR* , < ) e. M ) |