Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpreqprb | |- ( A e. V -> ( A e. { B , C } <-> E. x { B , C } = { A , x } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpreqpr |  |-  ( A e. { B , C } -> E. x { B , C } = { A , x } ) | |
| 2 | prid1g |  |-  ( A e. V -> A e. { A , x } ) | |
| 3 | eleq2 |  |-  ( { B , C } = { A , x } -> ( A e. { B , C } <-> A e. { A , x } ) ) | |
| 4 | 2 3 | syl5ibrcom |  |-  ( A e. V -> ( { B , C } = { A , x } -> A e. { B , C } ) ) | 
| 5 | 4 | exlimdv |  |-  ( A e. V -> ( E. x { B , C } = { A , x } -> A e. { B , C } ) ) | 
| 6 | 1 5 | impbid2 |  |-  ( A e. V -> ( A e. { B , C } <-> E. x { B , C } = { A , x } ) ) |