Metamath Proof Explorer


Theorem elpreqprb

Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020)

Ref Expression
Assertion elpreqprb ( 𝐴𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) )

Proof

Step Hyp Ref Expression
1 elpreqpr ( 𝐴 ∈ { 𝐵 , 𝐶 } → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } )
2 prid1g ( 𝐴𝑉𝐴 ∈ { 𝐴 , 𝑥 } )
3 eleq2 ( { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ 𝐴 ∈ { 𝐴 , 𝑥 } ) )
4 2 3 syl5ibrcom ( 𝐴𝑉 → ( { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } → 𝐴 ∈ { 𝐵 , 𝐶 } ) )
5 4 exlimdv ( 𝐴𝑉 → ( ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } → 𝐴 ∈ { 𝐵 , 𝐶 } ) )
6 1 5 impbid2 ( 𝐴𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) )