Metamath Proof Explorer


Theorem eltpsi

Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses eltpsi.k
|- K = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , J >. }
eltpsi.u
|- A = U. J
eltpsi.j
|- J e. Top
Assertion eltpsi
|- K e. TopSp

Proof

Step Hyp Ref Expression
1 eltpsi.k
 |-  K = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , J >. }
2 eltpsi.u
 |-  A = U. J
3 eltpsi.j
 |-  J e. Top
4 2 toptopon
 |-  ( J e. Top <-> J e. ( TopOn ` A ) )
5 3 4 mpbi
 |-  J e. ( TopOn ` A )
6 1 eltpsg
 |-  ( J e. ( TopOn ` A ) -> K e. TopSp )
7 5 6 ax-mp
 |-  K e. TopSp