Metamath Proof Explorer


Theorem eltpsi

Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses eltpsi.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ }
eltpsi.u 𝐴 = 𝐽
eltpsi.j 𝐽 ∈ Top
Assertion eltpsi 𝐾 ∈ TopSp

Proof

Step Hyp Ref Expression
1 eltpsi.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ }
2 eltpsi.u 𝐴 = 𝐽
3 eltpsi.j 𝐽 ∈ Top
4 2 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐴 ) )
5 3 4 mpbi 𝐽 ∈ ( TopOn ‘ 𝐴 )
6 1 eltpsg ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐾 ∈ TopSp )
7 5 6 ax-mp 𝐾 ∈ TopSp