Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. ZZ_s[1/2] -> A e. _V ) |
2 |
|
id |
|- ( A = ( x /su ( 2s ^su y ) ) -> A = ( x /su ( 2s ^su y ) ) ) |
3 |
|
ovex |
|- ( x /su ( 2s ^su y ) ) e. _V |
4 |
2 3
|
eqeltrdi |
|- ( A = ( x /su ( 2s ^su y ) ) -> A e. _V ) |
5 |
4
|
a1i |
|- ( ( x e. ZZ_s /\ y e. NN0_s ) -> ( A = ( x /su ( 2s ^su y ) ) -> A e. _V ) ) |
6 |
5
|
rexlimivv |
|- ( E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) -> A e. _V ) |
7 |
|
eqeq1 |
|- ( z = A -> ( z = ( x /su ( 2s ^su y ) ) <-> A = ( x /su ( 2s ^su y ) ) ) ) |
8 |
7
|
2rexbidv |
|- ( z = A -> ( E. x e. ZZ_s E. y e. NN0_s z = ( x /su ( 2s ^su y ) ) <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) ) |
9 |
|
df-zs12 |
|- ZZ_s[1/2] = { z | E. x e. ZZ_s E. y e. NN0_s z = ( x /su ( 2s ^su y ) ) } |
10 |
8 9
|
elab2g |
|- ( A e. _V -> ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) ) |
11 |
1 6 10
|
pm5.21nii |
|- ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) |