Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ ℤs[1/2] → 𝐴 ∈ V ) |
2 |
|
id |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) |
3 |
|
ovex |
⊢ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ∈ V |
4 |
2 3
|
eqeltrdi |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → 𝐴 ∈ V ) |
5 |
4
|
a1i |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → 𝐴 ∈ V ) ) |
6 |
5
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → 𝐴 ∈ V ) |
7 |
|
eqeq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ↔ 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ) |
8 |
7
|
2rexbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝑧 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ) |
9 |
|
df-zs12 |
⊢ ℤs[1/2] = { 𝑧 ∣ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝑧 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) } |
10 |
8 9
|
elab2g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ) |
11 |
1 6 10
|
pm5.21nii |
⊢ ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) |