Metamath Proof Explorer


Theorem elzs12

Description: Membership in the dyadic fractions. (Contributed by Scott Fenton, 7-Aug-2025)

Ref Expression
Assertion elzs12 Could not format assertion : No typesetting found for |- ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 elex Could not format ( A e. ZZ_s[1/2] -> A e. _V ) : No typesetting found for |- ( A e. ZZ_s[1/2] -> A e. _V ) with typecode |-
2 id Could not format ( A = ( x /su ( 2s ^su y ) ) -> A = ( x /su ( 2s ^su y ) ) ) : No typesetting found for |- ( A = ( x /su ( 2s ^su y ) ) -> A = ( x /su ( 2s ^su y ) ) ) with typecode |-
3 ovex Could not format ( x /su ( 2s ^su y ) ) e. _V : No typesetting found for |- ( x /su ( 2s ^su y ) ) e. _V with typecode |-
4 2 3 eqeltrdi Could not format ( A = ( x /su ( 2s ^su y ) ) -> A e. _V ) : No typesetting found for |- ( A = ( x /su ( 2s ^su y ) ) -> A e. _V ) with typecode |-
5 4 a1i Could not format ( ( x e. ZZ_s /\ y e. NN0_s ) -> ( A = ( x /su ( 2s ^su y ) ) -> A e. _V ) ) : No typesetting found for |- ( ( x e. ZZ_s /\ y e. NN0_s ) -> ( A = ( x /su ( 2s ^su y ) ) -> A e. _V ) ) with typecode |-
6 5 rexlimivv Could not format ( E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) -> A e. _V ) : No typesetting found for |- ( E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) -> A e. _V ) with typecode |-
7 eqeq1 Could not format ( z = A -> ( z = ( x /su ( 2s ^su y ) ) <-> A = ( x /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( z = A -> ( z = ( x /su ( 2s ^su y ) ) <-> A = ( x /su ( 2s ^su y ) ) ) ) with typecode |-
8 7 2rexbidv Could not format ( z = A -> ( E. x e. ZZ_s E. y e. NN0_s z = ( x /su ( 2s ^su y ) ) <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( z = A -> ( E. x e. ZZ_s E. y e. NN0_s z = ( x /su ( 2s ^su y ) ) <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) ) with typecode |-
9 df-zs12 Could not format ZZ_s[1/2] = { z | E. x e. ZZ_s E. y e. NN0_s z = ( x /su ( 2s ^su y ) ) } : No typesetting found for |- ZZ_s[1/2] = { z | E. x e. ZZ_s E. y e. NN0_s z = ( x /su ( 2s ^su y ) ) } with typecode |-
10 8 9 elab2g Could not format ( A e. _V -> ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( A e. _V -> ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) ) with typecode |-
11 1 6 10 pm5.21nii Could not format ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) : No typesetting found for |- ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) with typecode |-