| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enpr2dOLD.1 |  |-  ( ph -> A e. C ) | 
						
							| 2 |  | enpr2dOLD.2 |  |-  ( ph -> B e. D ) | 
						
							| 3 |  | enpr2dOLD.3 |  |-  ( ph -> -. A = B ) | 
						
							| 4 |  | ensn1g |  |-  ( A e. C -> { A } ~~ 1o ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> { A } ~~ 1o ) | 
						
							| 6 |  | 1on |  |-  1o e. On | 
						
							| 7 |  | en2sn |  |-  ( ( B e. D /\ 1o e. On ) -> { B } ~~ { 1o } ) | 
						
							| 8 | 2 6 7 | sylancl |  |-  ( ph -> { B } ~~ { 1o } ) | 
						
							| 9 | 3 | neqned |  |-  ( ph -> A =/= B ) | 
						
							| 10 |  | disjsn2 |  |-  ( A =/= B -> ( { A } i^i { B } ) = (/) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> ( { A } i^i { B } ) = (/) ) | 
						
							| 12 | 6 | onirri |  |-  -. 1o e. 1o | 
						
							| 13 | 12 | a1i |  |-  ( ph -> -. 1o e. 1o ) | 
						
							| 14 |  | disjsn |  |-  ( ( 1o i^i { 1o } ) = (/) <-> -. 1o e. 1o ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ph -> ( 1o i^i { 1o } ) = (/) ) | 
						
							| 16 |  | unen |  |-  ( ( ( { A } ~~ 1o /\ { B } ~~ { 1o } ) /\ ( ( { A } i^i { B } ) = (/) /\ ( 1o i^i { 1o } ) = (/) ) ) -> ( { A } u. { B } ) ~~ ( 1o u. { 1o } ) ) | 
						
							| 17 | 5 8 11 15 16 | syl22anc |  |-  ( ph -> ( { A } u. { B } ) ~~ ( 1o u. { 1o } ) ) | 
						
							| 18 |  | df-pr |  |-  { A , B } = ( { A } u. { B } ) | 
						
							| 19 |  | df-suc |  |-  suc 1o = ( 1o u. { 1o } ) | 
						
							| 20 | 17 18 19 | 3brtr4g |  |-  ( ph -> { A , B } ~~ suc 1o ) | 
						
							| 21 |  | df-2o |  |-  2o = suc 1o | 
						
							| 22 | 20 21 | breqtrrdi |  |-  ( ph -> { A , B } ~~ 2o ) |