| Step |
Hyp |
Ref |
Expression |
| 1 |
|
albi |
|- ( A. z ( z = x <-> z = y ) -> ( A. z z = x <-> A. z z = y ) ) |
| 2 |
|
ax6e |
|- E. z z = y |
| 3 |
|
biimpr |
|- ( ( z = x <-> z = y ) -> ( z = y -> z = x ) ) |
| 4 |
|
ax7 |
|- ( z = x -> ( z = y -> x = y ) ) |
| 5 |
3 4
|
syli |
|- ( ( z = x <-> z = y ) -> ( z = y -> x = y ) ) |
| 6 |
5
|
com12 |
|- ( z = y -> ( ( z = x <-> z = y ) -> x = y ) ) |
| 7 |
2 6
|
eximii |
|- E. z ( ( z = x <-> z = y ) -> x = y ) |
| 8 |
7
|
19.35i |
|- ( A. z ( z = x <-> z = y ) -> E. z x = y ) |
| 9 |
4
|
spsd |
|- ( z = x -> ( A. z z = y -> x = y ) ) |
| 10 |
9
|
sps |
|- ( A. z z = x -> ( A. z z = y -> x = y ) ) |
| 11 |
10
|
a1dd |
|- ( A. z z = x -> ( A. z z = y -> ( E. z x = y -> x = y ) ) ) |
| 12 |
|
nfeqf |
|- ( ( -. A. z z = x /\ -. A. z z = y ) -> F/ z x = y ) |
| 13 |
12
|
19.9d |
|- ( ( -. A. z z = x /\ -. A. z z = y ) -> ( E. z x = y -> x = y ) ) |
| 14 |
13
|
ex |
|- ( -. A. z z = x -> ( -. A. z z = y -> ( E. z x = y -> x = y ) ) ) |
| 15 |
11 14
|
bija |
|- ( ( A. z z = x <-> A. z z = y ) -> ( E. z x = y -> x = y ) ) |
| 16 |
1 8 15
|
sylc |
|- ( A. z ( z = x <-> z = y ) -> x = y ) |