| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdsze.n |
|- ( ph -> N e. NN ) |
| 2 |
|
erdsze.f |
|- ( ph -> F : ( 1 ... N ) -1-1-> RR ) |
| 3 |
|
erdszelem.k |
|- K = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) ) |
| 4 |
|
erdszelem.o |
|- O Or RR |
| 5 |
|
ltso |
|- < Or RR |
| 6 |
5
|
supex |
|- sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) e. _V |
| 7 |
6
|
a1i |
|- ( ( ph /\ x e. ( 1 ... N ) ) -> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) e. _V ) |
| 8 |
3
|
a1i |
|- ( ph -> K = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) ) ) |
| 9 |
|
eqid |
|- { y e. ~P ( 1 ... z ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ z e. y ) } = { y e. ~P ( 1 ... z ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ z e. y ) } |
| 10 |
9
|
erdszelem2 |
|- ( ( # " { y e. ~P ( 1 ... z ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ z e. y ) } ) e. Fin /\ ( # " { y e. ~P ( 1 ... z ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ z e. y ) } ) C_ NN ) |
| 11 |
10
|
simpri |
|- ( # " { y e. ~P ( 1 ... z ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ z e. y ) } ) C_ NN |
| 12 |
1 2 3 4
|
erdszelem5 |
|- ( ( ph /\ z e. ( 1 ... N ) ) -> ( K ` z ) e. ( # " { y e. ~P ( 1 ... z ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ z e. y ) } ) ) |
| 13 |
11 12
|
sselid |
|- ( ( ph /\ z e. ( 1 ... N ) ) -> ( K ` z ) e. NN ) |
| 14 |
7 8 13
|
fmpt2d |
|- ( ph -> K : ( 1 ... N ) --> NN ) |