| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdsze.n |
|- ( ph -> N e. NN ) |
| 2 |
|
erdsze.f |
|- ( ph -> F : ( 1 ... N ) -1-1-> RR ) |
| 3 |
|
erdszelem.k |
|- K = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) ) |
| 4 |
|
erdszelem.o |
|- O Or RR |
| 5 |
|
erdszelem.a |
|- ( ph -> A e. ( 1 ... N ) ) |
| 6 |
|
erdszelem7.r |
|- ( ph -> R e. NN ) |
| 7 |
|
erdszelem7.m |
|- ( ph -> -. ( K ` A ) e. ( 1 ... ( R - 1 ) ) ) |
| 8 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 9 |
|
ffun |
|- ( # : _V --> ( NN0 u. { +oo } ) -> Fun # ) |
| 10 |
8 9
|
ax-mp |
|- Fun # |
| 11 |
1 2 3 4
|
erdszelem5 |
|- ( ( ph /\ A e. ( 1 ... N ) ) -> ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) |
| 12 |
5 11
|
mpdan |
|- ( ph -> ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) |
| 13 |
|
fvelima |
|- ( ( Fun # /\ ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) -> E. s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` s ) = ( K ` A ) ) |
| 14 |
10 12 13
|
sylancr |
|- ( ph -> E. s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` s ) = ( K ` A ) ) |
| 15 |
|
eqid |
|- { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } = { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } |
| 16 |
15
|
erdszelem1 |
|- ( s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } <-> ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) ) |
| 17 |
|
simprl1 |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> s C_ ( 1 ... A ) ) |
| 18 |
|
elfzuz3 |
|- ( A e. ( 1 ... N ) -> N e. ( ZZ>= ` A ) ) |
| 19 |
|
fzss2 |
|- ( N e. ( ZZ>= ` A ) -> ( 1 ... A ) C_ ( 1 ... N ) ) |
| 20 |
5 18 19
|
3syl |
|- ( ph -> ( 1 ... A ) C_ ( 1 ... N ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> ( 1 ... A ) C_ ( 1 ... N ) ) |
| 22 |
17 21
|
sstrd |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> s C_ ( 1 ... N ) ) |
| 23 |
|
velpw |
|- ( s e. ~P ( 1 ... N ) <-> s C_ ( 1 ... N ) ) |
| 24 |
22 23
|
sylibr |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> s e. ~P ( 1 ... N ) ) |
| 25 |
1 2 3 4
|
erdszelem6 |
|- ( ph -> K : ( 1 ... N ) --> NN ) |
| 26 |
25 5
|
ffvelcdmd |
|- ( ph -> ( K ` A ) e. NN ) |
| 27 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 28 |
26 27
|
eleqtrdi |
|- ( ph -> ( K ` A ) e. ( ZZ>= ` 1 ) ) |
| 29 |
|
nnz |
|- ( R e. NN -> R e. ZZ ) |
| 30 |
|
peano2zm |
|- ( R e. ZZ -> ( R - 1 ) e. ZZ ) |
| 31 |
6 29 30
|
3syl |
|- ( ph -> ( R - 1 ) e. ZZ ) |
| 32 |
|
elfz5 |
|- ( ( ( K ` A ) e. ( ZZ>= ` 1 ) /\ ( R - 1 ) e. ZZ ) -> ( ( K ` A ) e. ( 1 ... ( R - 1 ) ) <-> ( K ` A ) <_ ( R - 1 ) ) ) |
| 33 |
28 31 32
|
syl2anc |
|- ( ph -> ( ( K ` A ) e. ( 1 ... ( R - 1 ) ) <-> ( K ` A ) <_ ( R - 1 ) ) ) |
| 34 |
|
nnltlem1 |
|- ( ( ( K ` A ) e. NN /\ R e. NN ) -> ( ( K ` A ) < R <-> ( K ` A ) <_ ( R - 1 ) ) ) |
| 35 |
26 6 34
|
syl2anc |
|- ( ph -> ( ( K ` A ) < R <-> ( K ` A ) <_ ( R - 1 ) ) ) |
| 36 |
33 35
|
bitr4d |
|- ( ph -> ( ( K ` A ) e. ( 1 ... ( R - 1 ) ) <-> ( K ` A ) < R ) ) |
| 37 |
7 36
|
mtbid |
|- ( ph -> -. ( K ` A ) < R ) |
| 38 |
6
|
nnred |
|- ( ph -> R e. RR ) |
| 39 |
15
|
erdszelem2 |
|- ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) e. Fin /\ ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) C_ NN ) |
| 40 |
39
|
simpri |
|- ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) C_ NN |
| 41 |
|
nnssre |
|- NN C_ RR |
| 42 |
40 41
|
sstri |
|- ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) C_ RR |
| 43 |
42 12
|
sselid |
|- ( ph -> ( K ` A ) e. RR ) |
| 44 |
38 43
|
lenltd |
|- ( ph -> ( R <_ ( K ` A ) <-> -. ( K ` A ) < R ) ) |
| 45 |
37 44
|
mpbird |
|- ( ph -> R <_ ( K ` A ) ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> R <_ ( K ` A ) ) |
| 47 |
|
simprr |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> ( # ` s ) = ( K ` A ) ) |
| 48 |
46 47
|
breqtrrd |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> R <_ ( # ` s ) ) |
| 49 |
|
simprl2 |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> ( F |` s ) Isom < , O ( s , ( F " s ) ) ) |
| 50 |
24 48 49
|
jca32 |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> ( s e. ~P ( 1 ... N ) /\ ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) |
| 51 |
50
|
expr |
|- ( ( ph /\ ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) ) -> ( ( # ` s ) = ( K ` A ) -> ( s e. ~P ( 1 ... N ) /\ ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) ) |
| 52 |
16 51
|
sylan2b |
|- ( ( ph /\ s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) -> ( ( # ` s ) = ( K ` A ) -> ( s e. ~P ( 1 ... N ) /\ ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) ) |
| 53 |
52
|
expimpd |
|- ( ph -> ( ( s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } /\ ( # ` s ) = ( K ` A ) ) -> ( s e. ~P ( 1 ... N ) /\ ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) ) |
| 54 |
53
|
reximdv2 |
|- ( ph -> ( E. s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` s ) = ( K ` A ) -> E. s e. ~P ( 1 ... N ) ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) |
| 55 |
14 54
|
mpd |
|- ( ph -> E. s e. ~P ( 1 ... N ) ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) |