| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdszelem1.1 |
|- S = { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } |
| 2 |
|
fzfi |
|- ( 1 ... A ) e. Fin |
| 3 |
|
pwfi |
|- ( ( 1 ... A ) e. Fin <-> ~P ( 1 ... A ) e. Fin ) |
| 4 |
2 3
|
mpbi |
|- ~P ( 1 ... A ) e. Fin |
| 5 |
|
ssrab2 |
|- { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } C_ ~P ( 1 ... A ) |
| 6 |
1 5
|
eqsstri |
|- S C_ ~P ( 1 ... A ) |
| 7 |
|
ssfi |
|- ( ( ~P ( 1 ... A ) e. Fin /\ S C_ ~P ( 1 ... A ) ) -> S e. Fin ) |
| 8 |
4 6 7
|
mp2an |
|- S e. Fin |
| 9 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 10 |
|
ffun |
|- ( # : _V --> ( NN0 u. { +oo } ) -> Fun # ) |
| 11 |
9 10
|
ax-mp |
|- Fun # |
| 12 |
|
ssv |
|- S C_ _V |
| 13 |
9
|
fdmi |
|- dom # = _V |
| 14 |
12 13
|
sseqtrri |
|- S C_ dom # |
| 15 |
|
fores |
|- ( ( Fun # /\ S C_ dom # ) -> ( # |` S ) : S -onto-> ( # " S ) ) |
| 16 |
11 14 15
|
mp2an |
|- ( # |` S ) : S -onto-> ( # " S ) |
| 17 |
|
fofi |
|- ( ( S e. Fin /\ ( # |` S ) : S -onto-> ( # " S ) ) -> ( # " S ) e. Fin ) |
| 18 |
8 16 17
|
mp2an |
|- ( # " S ) e. Fin |
| 19 |
|
funimass4 |
|- ( ( Fun # /\ S C_ dom # ) -> ( ( # " S ) C_ NN <-> A. x e. S ( # ` x ) e. NN ) ) |
| 20 |
11 14 19
|
mp2an |
|- ( ( # " S ) C_ NN <-> A. x e. S ( # ` x ) e. NN ) |
| 21 |
1
|
erdszelem1 |
|- ( x e. S <-> ( x C_ ( 1 ... A ) /\ ( F |` x ) Isom < , O ( x , ( F " x ) ) /\ A e. x ) ) |
| 22 |
|
ne0i |
|- ( A e. x -> x =/= (/) ) |
| 23 |
22
|
3ad2ant3 |
|- ( ( x C_ ( 1 ... A ) /\ ( F |` x ) Isom < , O ( x , ( F " x ) ) /\ A e. x ) -> x =/= (/) ) |
| 24 |
|
simp1 |
|- ( ( x C_ ( 1 ... A ) /\ ( F |` x ) Isom < , O ( x , ( F " x ) ) /\ A e. x ) -> x C_ ( 1 ... A ) ) |
| 25 |
|
ssfi |
|- ( ( ( 1 ... A ) e. Fin /\ x C_ ( 1 ... A ) ) -> x e. Fin ) |
| 26 |
2 24 25
|
sylancr |
|- ( ( x C_ ( 1 ... A ) /\ ( F |` x ) Isom < , O ( x , ( F " x ) ) /\ A e. x ) -> x e. Fin ) |
| 27 |
|
hashnncl |
|- ( x e. Fin -> ( ( # ` x ) e. NN <-> x =/= (/) ) ) |
| 28 |
26 27
|
syl |
|- ( ( x C_ ( 1 ... A ) /\ ( F |` x ) Isom < , O ( x , ( F " x ) ) /\ A e. x ) -> ( ( # ` x ) e. NN <-> x =/= (/) ) ) |
| 29 |
23 28
|
mpbird |
|- ( ( x C_ ( 1 ... A ) /\ ( F |` x ) Isom < , O ( x , ( F " x ) ) /\ A e. x ) -> ( # ` x ) e. NN ) |
| 30 |
21 29
|
sylbi |
|- ( x e. S -> ( # ` x ) e. NN ) |
| 31 |
20 30
|
mprgbir |
|- ( # " S ) C_ NN |
| 32 |
18 31
|
pm3.2i |
|- ( ( # " S ) e. Fin /\ ( # " S ) C_ NN ) |