Step |
Hyp |
Ref |
Expression |
1 |
|
erdszelem1.1 |
⊢ 𝑆 = { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } |
2 |
|
fzfi |
⊢ ( 1 ... 𝐴 ) ∈ Fin |
3 |
|
pwfi |
⊢ ( ( 1 ... 𝐴 ) ∈ Fin ↔ 𝒫 ( 1 ... 𝐴 ) ∈ Fin ) |
4 |
2 3
|
mpbi |
⊢ 𝒫 ( 1 ... 𝐴 ) ∈ Fin |
5 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ⊆ 𝒫 ( 1 ... 𝐴 ) |
6 |
1 5
|
eqsstri |
⊢ 𝑆 ⊆ 𝒫 ( 1 ... 𝐴 ) |
7 |
|
ssfi |
⊢ ( ( 𝒫 ( 1 ... 𝐴 ) ∈ Fin ∧ 𝑆 ⊆ 𝒫 ( 1 ... 𝐴 ) ) → 𝑆 ∈ Fin ) |
8 |
4 6 7
|
mp2an |
⊢ 𝑆 ∈ Fin |
9 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
10 |
|
ffun |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → Fun ♯ ) |
11 |
9 10
|
ax-mp |
⊢ Fun ♯ |
12 |
|
ssv |
⊢ 𝑆 ⊆ V |
13 |
9
|
fdmi |
⊢ dom ♯ = V |
14 |
12 13
|
sseqtrri |
⊢ 𝑆 ⊆ dom ♯ |
15 |
|
fores |
⊢ ( ( Fun ♯ ∧ 𝑆 ⊆ dom ♯ ) → ( ♯ ↾ 𝑆 ) : 𝑆 –onto→ ( ♯ “ 𝑆 ) ) |
16 |
11 14 15
|
mp2an |
⊢ ( ♯ ↾ 𝑆 ) : 𝑆 –onto→ ( ♯ “ 𝑆 ) |
17 |
|
fofi |
⊢ ( ( 𝑆 ∈ Fin ∧ ( ♯ ↾ 𝑆 ) : 𝑆 –onto→ ( ♯ “ 𝑆 ) ) → ( ♯ “ 𝑆 ) ∈ Fin ) |
18 |
8 16 17
|
mp2an |
⊢ ( ♯ “ 𝑆 ) ∈ Fin |
19 |
|
funimass4 |
⊢ ( ( Fun ♯ ∧ 𝑆 ⊆ dom ♯ ) → ( ( ♯ “ 𝑆 ) ⊆ ℕ ↔ ∀ 𝑥 ∈ 𝑆 ( ♯ ‘ 𝑥 ) ∈ ℕ ) ) |
20 |
11 14 19
|
mp2an |
⊢ ( ( ♯ “ 𝑆 ) ⊆ ℕ ↔ ∀ 𝑥 ∈ 𝑆 ( ♯ ‘ 𝑥 ) ∈ ℕ ) |
21 |
1
|
erdszelem1 |
⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹 “ 𝑥 ) ) ∧ 𝐴 ∈ 𝑥 ) ) |
22 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝑥 → 𝑥 ≠ ∅ ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹 “ 𝑥 ) ) ∧ 𝐴 ∈ 𝑥 ) → 𝑥 ≠ ∅ ) |
24 |
|
simp1 |
⊢ ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹 “ 𝑥 ) ) ∧ 𝐴 ∈ 𝑥 ) → 𝑥 ⊆ ( 1 ... 𝐴 ) ) |
25 |
|
ssfi |
⊢ ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ 𝑥 ⊆ ( 1 ... 𝐴 ) ) → 𝑥 ∈ Fin ) |
26 |
2 24 25
|
sylancr |
⊢ ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹 “ 𝑥 ) ) ∧ 𝐴 ∈ 𝑥 ) → 𝑥 ∈ Fin ) |
27 |
|
hashnncl |
⊢ ( 𝑥 ∈ Fin → ( ( ♯ ‘ 𝑥 ) ∈ ℕ ↔ 𝑥 ≠ ∅ ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹 “ 𝑥 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( ( ♯ ‘ 𝑥 ) ∈ ℕ ↔ 𝑥 ≠ ∅ ) ) |
29 |
23 28
|
mpbird |
⊢ ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹 “ 𝑥 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( ♯ ‘ 𝑥 ) ∈ ℕ ) |
30 |
21 29
|
sylbi |
⊢ ( 𝑥 ∈ 𝑆 → ( ♯ ‘ 𝑥 ) ∈ ℕ ) |
31 |
20 30
|
mprgbir |
⊢ ( ♯ “ 𝑆 ) ⊆ ℕ |
32 |
18 31
|
pm3.2i |
⊢ ( ( ♯ “ 𝑆 ) ∈ Fin ∧ ( ♯ “ 𝑆 ) ⊆ ℕ ) |