Metamath Proof Explorer


Theorem erdszelem2

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypothesis erdszelem1.1 𝑆 = { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝐴𝑦 ) }
Assertion erdszelem2 ( ( ♯ “ 𝑆 ) ∈ Fin ∧ ( ♯ “ 𝑆 ) ⊆ ℕ )

Proof

Step Hyp Ref Expression
1 erdszelem1.1 𝑆 = { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝐴𝑦 ) }
2 fzfi ( 1 ... 𝐴 ) ∈ Fin
3 pwfi ( ( 1 ... 𝐴 ) ∈ Fin ↔ 𝒫 ( 1 ... 𝐴 ) ∈ Fin )
4 2 3 mpbi 𝒫 ( 1 ... 𝐴 ) ∈ Fin
5 ssrab2 { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝐴𝑦 ) } ⊆ 𝒫 ( 1 ... 𝐴 )
6 1 5 eqsstri 𝑆 ⊆ 𝒫 ( 1 ... 𝐴 )
7 ssfi ( ( 𝒫 ( 1 ... 𝐴 ) ∈ Fin ∧ 𝑆 ⊆ 𝒫 ( 1 ... 𝐴 ) ) → 𝑆 ∈ Fin )
8 4 6 7 mp2an 𝑆 ∈ Fin
9 hashf ♯ : V ⟶ ( ℕ0 ∪ { +∞ } )
10 ffun ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → Fun ♯ )
11 9 10 ax-mp Fun ♯
12 ssv 𝑆 ⊆ V
13 9 fdmi dom ♯ = V
14 12 13 sseqtrri 𝑆 ⊆ dom ♯
15 fores ( ( Fun ♯ ∧ 𝑆 ⊆ dom ♯ ) → ( ♯ ↾ 𝑆 ) : 𝑆onto→ ( ♯ “ 𝑆 ) )
16 11 14 15 mp2an ( ♯ ↾ 𝑆 ) : 𝑆onto→ ( ♯ “ 𝑆 )
17 fofi ( ( 𝑆 ∈ Fin ∧ ( ♯ ↾ 𝑆 ) : 𝑆onto→ ( ♯ “ 𝑆 ) ) → ( ♯ “ 𝑆 ) ∈ Fin )
18 8 16 17 mp2an ( ♯ “ 𝑆 ) ∈ Fin
19 funimass4 ( ( Fun ♯ ∧ 𝑆 ⊆ dom ♯ ) → ( ( ♯ “ 𝑆 ) ⊆ ℕ ↔ ∀ 𝑥𝑆 ( ♯ ‘ 𝑥 ) ∈ ℕ ) )
20 11 14 19 mp2an ( ( ♯ “ 𝑆 ) ⊆ ℕ ↔ ∀ 𝑥𝑆 ( ♯ ‘ 𝑥 ) ∈ ℕ )
21 1 erdszelem1 ( 𝑥𝑆 ↔ ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹𝑥 ) ) ∧ 𝐴𝑥 ) )
22 ne0i ( 𝐴𝑥𝑥 ≠ ∅ )
23 22 3ad2ant3 ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹𝑥 ) ) ∧ 𝐴𝑥 ) → 𝑥 ≠ ∅ )
24 simp1 ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹𝑥 ) ) ∧ 𝐴𝑥 ) → 𝑥 ⊆ ( 1 ... 𝐴 ) )
25 ssfi ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ 𝑥 ⊆ ( 1 ... 𝐴 ) ) → 𝑥 ∈ Fin )
26 2 24 25 sylancr ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹𝑥 ) ) ∧ 𝐴𝑥 ) → 𝑥 ∈ Fin )
27 hashnncl ( 𝑥 ∈ Fin → ( ( ♯ ‘ 𝑥 ) ∈ ℕ ↔ 𝑥 ≠ ∅ ) )
28 26 27 syl ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹𝑥 ) ) ∧ 𝐴𝑥 ) → ( ( ♯ ‘ 𝑥 ) ∈ ℕ ↔ 𝑥 ≠ ∅ ) )
29 23 28 mpbird ( ( 𝑥 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑥 ) Isom < , 𝑂 ( 𝑥 , ( 𝐹𝑥 ) ) ∧ 𝐴𝑥 ) → ( ♯ ‘ 𝑥 ) ∈ ℕ )
30 21 29 sylbi ( 𝑥𝑆 → ( ♯ ‘ 𝑥 ) ∈ ℕ )
31 20 30 mprgbir ( ♯ “ 𝑆 ) ⊆ ℕ
32 18 31 pm3.2i ( ( ♯ “ 𝑆 ) ∈ Fin ∧ ( ♯ “ 𝑆 ) ⊆ ℕ )