Metamath Proof Explorer


Theorem erdszelem1

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypothesis erdszelem1.1 𝑆 = { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝐴𝑦 ) }
Assertion erdszelem1 ( 𝑋𝑆 ↔ ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ∧ 𝐴𝑋 ) )

Proof

Step Hyp Ref Expression
1 erdszelem1.1 𝑆 = { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝐴𝑦 ) }
2 ovex ( 1 ... 𝐴 ) ∈ V
3 2 elpw2 ( 𝑋 ∈ 𝒫 ( 1 ... 𝐴 ) ↔ 𝑋 ⊆ ( 1 ... 𝐴 ) )
4 3 anbi1i ( ( 𝑋 ∈ 𝒫 ( 1 ... 𝐴 ) ∧ ( ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ∧ 𝐴𝑋 ) ) ↔ ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ∧ 𝐴𝑋 ) ) )
5 reseq2 ( 𝑦 = 𝑋 → ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
6 isoeq1 ( ( 𝐹𝑦 ) = ( 𝐹𝑋 ) → ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ↔ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ) )
7 5 6 syl ( 𝑦 = 𝑋 → ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ↔ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ) )
8 isoeq4 ( 𝑦 = 𝑋 → ( ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ↔ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑦 ) ) ) )
9 imaeq2 ( 𝑦 = 𝑋 → ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
10 isoeq5 ( ( 𝐹𝑦 ) = ( 𝐹𝑋 ) → ( ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑦 ) ) ↔ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ) )
11 9 10 syl ( 𝑦 = 𝑋 → ( ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑦 ) ) ↔ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ) )
12 7 8 11 3bitrd ( 𝑦 = 𝑋 → ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ↔ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ) )
13 eleq2 ( 𝑦 = 𝑋 → ( 𝐴𝑦𝐴𝑋 ) )
14 12 13 anbi12d ( 𝑦 = 𝑋 → ( ( ( 𝐹𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝐴𝑦 ) ↔ ( ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ∧ 𝐴𝑋 ) ) )
15 14 1 elrab2 ( 𝑋𝑆 ↔ ( 𝑋 ∈ 𝒫 ( 1 ... 𝐴 ) ∧ ( ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ∧ 𝐴𝑋 ) ) )
16 3anass ( ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ∧ 𝐴𝑋 ) ↔ ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ∧ 𝐴𝑋 ) ) )
17 4 15 16 3bitr4i ( 𝑋𝑆 ↔ ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹𝑋 ) ) ∧ 𝐴𝑋 ) )