Step |
Hyp |
Ref |
Expression |
1 |
|
erdszelem1.1 |
|- S = { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } |
2 |
|
ovex |
|- ( 1 ... A ) e. _V |
3 |
2
|
elpw2 |
|- ( X e. ~P ( 1 ... A ) <-> X C_ ( 1 ... A ) ) |
4 |
3
|
anbi1i |
|- ( ( X e. ~P ( 1 ... A ) /\ ( ( F |` X ) Isom < , O ( X , ( F " X ) ) /\ A e. X ) ) <-> ( X C_ ( 1 ... A ) /\ ( ( F |` X ) Isom < , O ( X , ( F " X ) ) /\ A e. X ) ) ) |
5 |
|
reseq2 |
|- ( y = X -> ( F |` y ) = ( F |` X ) ) |
6 |
|
isoeq1 |
|- ( ( F |` y ) = ( F |` X ) -> ( ( F |` y ) Isom < , O ( y , ( F " y ) ) <-> ( F |` X ) Isom < , O ( y , ( F " y ) ) ) ) |
7 |
5 6
|
syl |
|- ( y = X -> ( ( F |` y ) Isom < , O ( y , ( F " y ) ) <-> ( F |` X ) Isom < , O ( y , ( F " y ) ) ) ) |
8 |
|
isoeq4 |
|- ( y = X -> ( ( F |` X ) Isom < , O ( y , ( F " y ) ) <-> ( F |` X ) Isom < , O ( X , ( F " y ) ) ) ) |
9 |
|
imaeq2 |
|- ( y = X -> ( F " y ) = ( F " X ) ) |
10 |
|
isoeq5 |
|- ( ( F " y ) = ( F " X ) -> ( ( F |` X ) Isom < , O ( X , ( F " y ) ) <-> ( F |` X ) Isom < , O ( X , ( F " X ) ) ) ) |
11 |
9 10
|
syl |
|- ( y = X -> ( ( F |` X ) Isom < , O ( X , ( F " y ) ) <-> ( F |` X ) Isom < , O ( X , ( F " X ) ) ) ) |
12 |
7 8 11
|
3bitrd |
|- ( y = X -> ( ( F |` y ) Isom < , O ( y , ( F " y ) ) <-> ( F |` X ) Isom < , O ( X , ( F " X ) ) ) ) |
13 |
|
eleq2 |
|- ( y = X -> ( A e. y <-> A e. X ) ) |
14 |
12 13
|
anbi12d |
|- ( y = X -> ( ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) <-> ( ( F |` X ) Isom < , O ( X , ( F " X ) ) /\ A e. X ) ) ) |
15 |
14 1
|
elrab2 |
|- ( X e. S <-> ( X e. ~P ( 1 ... A ) /\ ( ( F |` X ) Isom < , O ( X , ( F " X ) ) /\ A e. X ) ) ) |
16 |
|
3anass |
|- ( ( X C_ ( 1 ... A ) /\ ( F |` X ) Isom < , O ( X , ( F " X ) ) /\ A e. X ) <-> ( X C_ ( 1 ... A ) /\ ( ( F |` X ) Isom < , O ( X , ( F " X ) ) /\ A e. X ) ) ) |
17 |
4 15 16
|
3bitr4i |
|- ( X e. S <-> ( X C_ ( 1 ... A ) /\ ( F |` X ) Isom < , O ( X , ( F " X ) ) /\ A e. X ) ) |