Metamath Proof Explorer


Theorem erngfmul-rN

Description: Ring multiplication operation. (Contributed by NM, 9-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r
|- H = ( LHyp ` K )
erngset.t-r
|- T = ( ( LTrn ` K ) ` W )
erngset.e-r
|- E = ( ( TEndo ` K ) ` W )
erngset.d-r
|- D = ( ( EDRingR ` K ) ` W )
erng.m-r
|- .x. = ( .r ` D )
Assertion erngfmul-rN
|- ( ( K e. V /\ W e. H ) -> .x. = ( s e. E , t e. E |-> ( t o. s ) ) )

Proof

Step Hyp Ref Expression
1 erngset.h-r
 |-  H = ( LHyp ` K )
2 erngset.t-r
 |-  T = ( ( LTrn ` K ) ` W )
3 erngset.e-r
 |-  E = ( ( TEndo ` K ) ` W )
4 erngset.d-r
 |-  D = ( ( EDRingR ` K ) ` W )
5 erng.m-r
 |-  .x. = ( .r ` D )
6 1 2 3 4 erngset-rN
 |-  ( ( K e. V /\ W e. H ) -> D = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } )
7 6 fveq2d
 |-  ( ( K e. V /\ W e. H ) -> ( .r ` D ) = ( .r ` { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) )
8 3 fvexi
 |-  E e. _V
9 8 8 mpoex
 |-  ( s e. E , t e. E |-> ( t o. s ) ) e. _V
10 eqid
 |-  { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. }
11 10 rngmulr
 |-  ( ( s e. E , t e. E |-> ( t o. s ) ) e. _V -> ( s e. E , t e. E |-> ( t o. s ) ) = ( .r ` { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) )
12 9 11 ax-mp
 |-  ( s e. E , t e. E |-> ( t o. s ) ) = ( .r ` { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } )
13 7 5 12 3eqtr4g
 |-  ( ( K e. V /\ W e. H ) -> .x. = ( s e. E , t e. E |-> ( t o. s ) ) )