Step |
Hyp |
Ref |
Expression |
1 |
|
erngset.h-r |
|- H = ( LHyp ` K ) |
2 |
|
erngset.t-r |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
erngset.e-r |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
erngset.d-r |
|- D = ( ( EDRingR ` K ) ` W ) |
5 |
1
|
erngfset-rN |
|- ( K e. V -> ( EDRingR ` K ) = ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) ) |
6 |
5
|
fveq1d |
|- ( K e. V -> ( ( EDRingR ` K ) ` W ) = ( ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) ` W ) ) |
7 |
4 6
|
syl5eq |
|- ( K e. V -> D = ( ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) ` W ) ) |
8 |
|
fveq2 |
|- ( w = W -> ( ( TEndo ` K ) ` w ) = ( ( TEndo ` K ) ` W ) ) |
9 |
8
|
opeq2d |
|- ( w = W -> <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. ) |
10 |
|
tpeq1 |
|- ( <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. -> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) |
11 |
3
|
opeq2i |
|- <. ( Base ` ndx ) , E >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. |
12 |
|
tpeq1 |
|- ( <. ( Base ` ndx ) , E >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. -> { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) |
13 |
11 12
|
ax-mp |
|- { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } |
14 |
10 13
|
eqtr4di |
|- ( <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. -> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) |
15 |
9 14
|
syl |
|- ( w = W -> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) |
16 |
8 3
|
eqtr4di |
|- ( w = W -> ( ( TEndo ` K ) ` w ) = E ) |
17 |
|
fveq2 |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) ) |
18 |
17 2
|
eqtr4di |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = T ) |
19 |
|
eqidd |
|- ( w = W -> ( ( s ` f ) o. ( t ` f ) ) = ( ( s ` f ) o. ( t ` f ) ) ) |
20 |
18 19
|
mpteq12dv |
|- ( w = W -> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) = ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
21 |
16 16 20
|
mpoeq123dv |
|- ( w = W -> ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) ) |
22 |
21
|
opeq2d |
|- ( w = W -> <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. = <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. ) |
23 |
22
|
tpeq2d |
|- ( w = W -> { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) |
24 |
|
eqidd |
|- ( w = W -> ( t o. s ) = ( t o. s ) ) |
25 |
16 16 24
|
mpoeq123dv |
|- ( w = W -> ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) = ( s e. E , t e. E |-> ( t o. s ) ) ) |
26 |
25
|
opeq2d |
|- ( w = W -> <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. = <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. ) |
27 |
26
|
tpeq3d |
|- ( w = W -> { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) |
28 |
15 23 27
|
3eqtrd |
|- ( w = W -> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) |
29 |
|
eqid |
|- ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) = ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) |
30 |
|
tpex |
|- { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } e. _V |
31 |
28 29 30
|
fvmpt |
|- ( W e. H -> ( ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) ` W ) = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) |
32 |
7 31
|
sylan9eq |
|- ( ( K e. V /\ W e. H ) -> D = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) |