| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erngset.h-r |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | erngset.t-r |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 3 |  | erngset.e-r |  |-  E = ( ( TEndo ` K ) ` W ) | 
						
							| 4 |  | erngset.d-r |  |-  D = ( ( EDRingR ` K ) ` W ) | 
						
							| 5 | 1 | erngfset-rN |  |-  ( K e. V -> ( EDRingR ` K ) = ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( K e. V -> ( ( EDRingR ` K ) ` W ) = ( ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) ` W ) ) | 
						
							| 7 | 4 6 | eqtrid |  |-  ( K e. V -> D = ( ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) ` W ) ) | 
						
							| 8 |  | fveq2 |  |-  ( w = W -> ( ( TEndo ` K ) ` w ) = ( ( TEndo ` K ) ` W ) ) | 
						
							| 9 | 8 | opeq2d |  |-  ( w = W -> <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. ) | 
						
							| 10 |  | tpeq1 |  |-  ( <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. -> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) | 
						
							| 11 | 3 | opeq2i |  |-  <. ( Base ` ndx ) , E >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. | 
						
							| 12 |  | tpeq1 |  |-  ( <. ( Base ` ndx ) , E >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. -> { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) | 
						
							| 13 | 11 12 | ax-mp |  |-  { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } | 
						
							| 14 | 10 13 | eqtr4di |  |-  ( <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. = <. ( Base ` ndx ) , ( ( TEndo ` K ) ` W ) >. -> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) | 
						
							| 15 | 9 14 | syl |  |-  ( w = W -> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) | 
						
							| 16 | 8 3 | eqtr4di |  |-  ( w = W -> ( ( TEndo ` K ) ` w ) = E ) | 
						
							| 17 |  | fveq2 |  |-  ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) ) | 
						
							| 18 | 17 2 | eqtr4di |  |-  ( w = W -> ( ( LTrn ` K ) ` w ) = T ) | 
						
							| 19 |  | eqidd |  |-  ( w = W -> ( ( s ` f ) o. ( t ` f ) ) = ( ( s ` f ) o. ( t ` f ) ) ) | 
						
							| 20 | 18 19 | mpteq12dv |  |-  ( w = W -> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) = ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) | 
						
							| 21 | 16 16 20 | mpoeq123dv |  |-  ( w = W -> ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) ) | 
						
							| 22 | 21 | opeq2d |  |-  ( w = W -> <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. = <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. ) | 
						
							| 23 | 22 | tpeq2d |  |-  ( w = W -> { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) | 
						
							| 24 |  | eqidd |  |-  ( w = W -> ( t o. s ) = ( t o. s ) ) | 
						
							| 25 | 16 16 24 | mpoeq123dv |  |-  ( w = W -> ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) = ( s e. E , t e. E |-> ( t o. s ) ) ) | 
						
							| 26 | 25 | opeq2d |  |-  ( w = W -> <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. = <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. ) | 
						
							| 27 | 26 | tpeq3d |  |-  ( w = W -> { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) | 
						
							| 28 | 15 23 27 | 3eqtrd |  |-  ( w = W -> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) | 
						
							| 29 |  | eqid |  |-  ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) = ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) | 
						
							| 30 |  | tpex |  |-  { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } e. _V | 
						
							| 31 | 28 29 30 | fvmpt |  |-  ( W e. H -> ( ( w e. H |-> { <. ( Base ` ndx ) , ( ( TEndo ` K ) ` w ) >. , <. ( +g ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( f e. ( ( LTrn ` K ) ` w ) |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , t e. ( ( TEndo ` K ) ` w ) |-> ( t o. s ) ) >. } ) ` W ) = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) | 
						
							| 32 | 7 31 | sylan9eq |  |-  ( ( K e. V /\ W e. H ) -> D = { <. ( Base ` ndx ) , E >. , <. ( +g ` ndx ) , ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) >. , <. ( .r ` ndx ) , ( s e. E , t e. E |-> ( t o. s ) ) >. } ) |