| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erngset.h-r | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | erngset.t-r | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | erngset.e-r | ⊢ 𝐸  =  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | erngset.d-r | ⊢ 𝐷  =  ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 | 1 | erngfset-rN | ⊢ ( 𝐾  ∈  𝑉  →  ( EDRingR ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝐾  ∈  𝑉  →  ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) ‘ 𝑊 ) ) | 
						
							| 7 | 4 6 | eqtrid | ⊢ ( 𝐾  ∈  𝑉  →  𝐷  =  ( ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) ‘ 𝑊 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 9 | 8 | opeq2d | ⊢ ( 𝑤  =  𝑊  →  〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉  =  〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) | 
						
							| 10 |  | tpeq1 | ⊢ ( 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉  =  〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉  →  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 11 | 3 | opeq2i | ⊢ 〈 ( Base ‘ ndx ) ,  𝐸 〉  =  〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 | 
						
							| 12 |  | tpeq1 | ⊢ ( 〈 ( Base ‘ ndx ) ,  𝐸 〉  =  〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉  →  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } | 
						
							| 14 | 10 13 | eqtr4di | ⊢ ( 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉  =  〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉  →  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 15 | 9 14 | syl | ⊢ ( 𝑤  =  𝑊  →  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 16 | 8 3 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  =  𝐸 ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 18 | 17 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  =  𝑇 ) | 
						
							| 19 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) )  =  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) | 
						
							| 20 | 18 19 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) )  =  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) | 
						
							| 21 | 16 16 20 | mpoeq123dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) )  =  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) ) | 
						
							| 22 | 21 | opeq2d | ⊢ ( 𝑤  =  𝑊  →  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉  =  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ) | 
						
							| 23 | 22 | tpeq2d | ⊢ ( 𝑤  =  𝑊  →  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 24 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  ( 𝑡  ∘  𝑠 )  =  ( 𝑡  ∘  𝑠 ) ) | 
						
							| 25 | 16 16 24 | mpoeq123dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) )  =  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑡  ∘  𝑠 ) ) ) | 
						
							| 26 | 25 | opeq2d | ⊢ ( 𝑤  =  𝑊  →  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉  =  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 ) | 
						
							| 27 | 26 | tpeq3d | ⊢ ( 𝑤  =  𝑊  →  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 28 | 15 23 27 | 3eqtrd | ⊢ ( 𝑤  =  𝑊  →  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 29 |  | eqid | ⊢ ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } )  =  ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 30 |  | tpex | ⊢ { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  ∈  V | 
						
							| 31 | 28 29 30 | fvmpt | ⊢ ( 𝑊  ∈  𝐻  →  ( ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) ‘ 𝑊 )  =  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 32 | 7 31 | sylan9eq | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  →  𝐷  =  { 〈 ( Base ‘ ndx ) ,  𝐸 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑓  ∈  𝑇  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  𝐸 ,  𝑡  ∈  𝐸  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) |