Step |
Hyp |
Ref |
Expression |
1 |
|
erngset.h-r |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
erngset.t-r |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
erngset.e-r |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
erngset.d-r |
⊢ 𝐷 = ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
1
|
erngfset-rN |
⊢ ( 𝐾 ∈ 𝑉 → ( EDRingR ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑉 → ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) ‘ 𝑊 ) ) |
7 |
4 6
|
syl5eq |
⊢ ( 𝐾 ∈ 𝑉 → 𝐷 = ( ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) ‘ 𝑊 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
9 |
8
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 = 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) |
10 |
|
tpeq1 |
⊢ ( 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 = 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 → { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
11 |
3
|
opeq2i |
⊢ 〈 ( Base ‘ ndx ) , 𝐸 〉 = 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 |
12 |
|
tpeq1 |
⊢ ( 〈 ( Base ‘ ndx ) , 𝐸 〉 = 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 → { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
13 |
11 12
|
ax-mp |
⊢ { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } |
14 |
10 13
|
eqtr4di |
⊢ ( 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 = 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〉 → { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
15 |
9 14
|
syl |
⊢ ( 𝑤 = 𝑊 → { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
16 |
8 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = 𝐸 ) |
17 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
18 |
17 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝑇 ) |
19 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) |
20 |
18 19
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
21 |
16 16 20
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) ) |
22 |
21
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 = 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ) |
23 |
22
|
tpeq2d |
⊢ ( 𝑤 = 𝑊 → { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
24 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( 𝑡 ∘ 𝑠 ) = ( 𝑡 ∘ 𝑠 ) ) |
25 |
16 16 24
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) ) |
26 |
25
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 = 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 ) |
27 |
26
|
tpeq3d |
⊢ ( 𝑤 = 𝑊 → { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
28 |
15 23 27
|
3eqtrd |
⊢ ( 𝑤 = 𝑊 → { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
29 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) = ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
30 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ∈ V |
31 |
28 29 30
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) ‘ 𝑊 ) = { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |
32 |
7 31
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐷 = { 〈 ( Base ‘ ndx ) , 𝐸 〉 , 〈 ( +g ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑡 ∘ 𝑠 ) ) 〉 } ) |