| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erngset.h-r | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | elex | ⊢ ( 𝐾  ∈  𝑉  →  𝐾  ∈  V ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  ( LHyp ‘ 𝐾 ) ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  𝐻 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( TEndo ‘ 𝑘 )  =  ( TEndo ‘ 𝐾 ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 7 | 6 | opeq2d | ⊢ ( 𝑘  =  𝐾  →  〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) 〉  =  〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LTrn ‘ 𝑘 )  =  ( LTrn ‘ 𝐾 ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 10 | 9 | mpteq1d | ⊢ ( 𝑘  =  𝐾  →  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) )  =  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) | 
						
							| 11 | 6 6 10 | mpoeq123dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) )  =  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) ) | 
						
							| 12 | 11 | opeq2d | ⊢ ( 𝑘  =  𝐾  →  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉  =  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝑘  =  𝐾  →  ( 𝑡  ∘  𝑠 )  =  ( 𝑡  ∘  𝑠 ) ) | 
						
							| 14 | 6 6 13 | mpoeq123dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) )  =  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) ) | 
						
							| 15 | 14 | opeq2d | ⊢ ( 𝑘  =  𝐾  →  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉  =  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 ) | 
						
							| 16 | 7 12 15 | tpeq123d | ⊢ ( 𝑘  =  𝐾  →  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) | 
						
							| 17 | 4 16 | mpteq12dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } )  =  ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) ) | 
						
							| 18 |  | df-edring-rN | ⊢ EDRingR  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) ) | 
						
							| 19 | 17 18 1 | mptfvmpt | ⊢ ( 𝐾  ∈  V  →  ( EDRingR ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) ) | 
						
							| 20 | 2 19 | syl | ⊢ ( 𝐾  ∈  𝑉  →  ( EDRingR ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  { 〈 ( Base ‘ ndx ) ,  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( 𝑠 ‘ 𝑓 )  ∘  ( 𝑡 ‘ 𝑓 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑡  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑡  ∘  𝑠 ) ) 〉 } ) ) |