Metamath Proof Explorer


Theorem et-ltneverrefl

Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024) Prefer to specify theorem domain and then apply ltnri . (New usage is discouraged.)

Ref Expression
Assertion et-ltneverrefl
|- -. A < A

Proof

Step Hyp Ref Expression
1 xrltnr
 |-  ( A e. RR* -> -. A < A )
2 opelxp1
 |-  ( <. A , A >. e. ( RR* X. RR* ) -> A e. RR* )
3 2 con3i
 |-  ( -. A e. RR* -> -. <. A , A >. e. ( RR* X. RR* ) )
4 ltrelxr
 |-  < C_ ( RR* X. RR* )
5 4 sseli
 |-  ( <. A , A >. e. < -> <. A , A >. e. ( RR* X. RR* ) )
6 3 5 nsyl
 |-  ( -. A e. RR* -> -. <. A , A >. e. < )
7 df-br
 |-  ( A < A <-> <. A , A >. e. < )
8 6 7 sylnibr
 |-  ( -. A e. RR* -> -. A < A )
9 1 8 pm2.61i
 |-  -. A < A