| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ltxr |
|- < = ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 2 |
|
df-3an |
|- ( ( x e. RR /\ y e. RR /\ x ( ( x e. RR /\ y e. RR ) /\ x |
| 3 |
2
|
opabbii |
|- { <. x , y >. | ( x e. RR /\ y e. RR /\ x . | ( ( x e. RR /\ y e. RR ) /\ x |
| 4 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. RR /\ y e. RR ) /\ x |
| 5 |
3 4
|
eqsstri |
|- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 6 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 7 |
5 6
|
sstri |
|- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 8 |
|
ressxr |
|- RR C_ RR* |
| 9 |
|
snsspr2 |
|- { -oo } C_ { +oo , -oo } |
| 10 |
|
ssun2 |
|- { +oo , -oo } C_ ( RR u. { +oo , -oo } ) |
| 11 |
|
df-xr |
|- RR* = ( RR u. { +oo , -oo } ) |
| 12 |
10 11
|
sseqtrri |
|- { +oo , -oo } C_ RR* |
| 13 |
9 12
|
sstri |
|- { -oo } C_ RR* |
| 14 |
8 13
|
unssi |
|- ( RR u. { -oo } ) C_ RR* |
| 15 |
|
snsspr1 |
|- { +oo } C_ { +oo , -oo } |
| 16 |
15 12
|
sstri |
|- { +oo } C_ RR* |
| 17 |
|
xpss12 |
|- ( ( ( RR u. { -oo } ) C_ RR* /\ { +oo } C_ RR* ) -> ( ( RR u. { -oo } ) X. { +oo } ) C_ ( RR* X. RR* ) ) |
| 18 |
14 16 17
|
mp2an |
|- ( ( RR u. { -oo } ) X. { +oo } ) C_ ( RR* X. RR* ) |
| 19 |
|
xpss12 |
|- ( ( { -oo } C_ RR* /\ RR C_ RR* ) -> ( { -oo } X. RR ) C_ ( RR* X. RR* ) ) |
| 20 |
13 8 19
|
mp2an |
|- ( { -oo } X. RR ) C_ ( RR* X. RR* ) |
| 21 |
18 20
|
unssi |
|- ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) C_ ( RR* X. RR* ) |
| 22 |
7 21
|
unssi |
|- ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 23 |
1 22
|
eqsstri |
|- < C_ ( RR* X. RR* ) |