Metamath Proof Explorer


Theorem et-ltneverrefl

Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024) Prefer to specify theorem domain and then apply ltnri . (New usage is discouraged.)

Ref Expression
Assertion et-ltneverrefl ¬ A < A

Proof

Step Hyp Ref Expression
1 xrltnr A * ¬ A < A
2 opelxp1 A A * × * A *
3 2 con3i ¬ A * ¬ A A * × *
4 ltrelxr < * × *
5 4 sseli A A < A A * × *
6 3 5 nsyl ¬ A * ¬ A A <
7 df-br A < A A A <
8 6 7 sylnibr ¬ A * ¬ A < A
9 1 8 pm2.61i ¬ A < A