Metamath Proof Explorer


Theorem et-ltneverrefl

Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024) Prefer to specify theorem domain and then apply ltnri . (New usage is discouraged.)

Ref Expression
Assertion et-ltneverrefl ¬ 𝐴 < 𝐴

Proof

Step Hyp Ref Expression
1 xrltnr ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 )
2 opelxp1 ( ⟨ 𝐴 , 𝐴 ⟩ ∈ ( ℝ* × ℝ* ) → 𝐴 ∈ ℝ* )
3 2 con3i ( ¬ 𝐴 ∈ ℝ* → ¬ ⟨ 𝐴 , 𝐴 ⟩ ∈ ( ℝ* × ℝ* ) )
4 ltrelxr < ⊆ ( ℝ* × ℝ* )
5 4 sseli ( ⟨ 𝐴 , 𝐴 ⟩ ∈ < → ⟨ 𝐴 , 𝐴 ⟩ ∈ ( ℝ* × ℝ* ) )
6 3 5 nsyl ( ¬ 𝐴 ∈ ℝ* → ¬ ⟨ 𝐴 , 𝐴 ⟩ ∈ < )
7 df-br ( 𝐴 < 𝐴 ↔ ⟨ 𝐴 , 𝐴 ⟩ ∈ < )
8 6 7 sylnibr ( ¬ 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 )
9 1 8 pm2.61i ¬ 𝐴 < 𝐴