Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024) Prefer to specify theorem domain and then apply ltnri . (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | et-ltneverrefl | ⊢ ¬ 𝐴 < 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltnr | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 ) | |
2 | opelxp1 | ⊢ ( 〈 𝐴 , 𝐴 〉 ∈ ( ℝ* × ℝ* ) → 𝐴 ∈ ℝ* ) | |
3 | 2 | con3i | ⊢ ( ¬ 𝐴 ∈ ℝ* → ¬ 〈 𝐴 , 𝐴 〉 ∈ ( ℝ* × ℝ* ) ) |
4 | ltrelxr | ⊢ < ⊆ ( ℝ* × ℝ* ) | |
5 | 4 | sseli | ⊢ ( 〈 𝐴 , 𝐴 〉 ∈ < → 〈 𝐴 , 𝐴 〉 ∈ ( ℝ* × ℝ* ) ) |
6 | 3 5 | nsyl | ⊢ ( ¬ 𝐴 ∈ ℝ* → ¬ 〈 𝐴 , 𝐴 〉 ∈ < ) |
7 | df-br | ⊢ ( 𝐴 < 𝐴 ↔ 〈 𝐴 , 𝐴 〉 ∈ < ) | |
8 | 6 7 | sylnibr | ⊢ ( ¬ 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 ) |
9 | 1 8 | pm2.61i | ⊢ ¬ 𝐴 < 𝐴 |