Metamath Proof Explorer


Theorem etransclem30

Description: The N -th derivative of F . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem30.s
|- ( ph -> S e. { RR , CC } )
etransclem30.a
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
etransclem30.p
|- ( ph -> P e. NN )
etransclem30.m
|- ( ph -> M e. NN0 )
etransclem30.f
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) )
etransclem30.n
|- ( ph -> N e. NN0 )
etransclem30.h
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) )
etransclem30.c
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } )
Assertion etransclem30
|- ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) )

Proof

Step Hyp Ref Expression
1 etransclem30.s
 |-  ( ph -> S e. { RR , CC } )
2 etransclem30.a
 |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
3 etransclem30.p
 |-  ( ph -> P e. NN )
4 etransclem30.m
 |-  ( ph -> M e. NN0 )
5 etransclem30.f
 |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) )
6 etransclem30.n
 |-  ( ph -> N e. NN0 )
7 etransclem30.h
 |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) )
8 etransclem30.c
 |-  C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } )
9 eqid
 |-  ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) ) = ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) )
10 1 2 3 4 5 6 7 8 9 etransclem29
 |-  ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) )