| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etranslemdvnf2lemlem.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem29.a |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem29.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem29.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | etransclem29.f |  |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 6 |  | etransclem29.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 |  | etransclem29.h |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 8 |  | etransclem29.c |  |-  C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 9 |  | etransclem29.e |  |-  E = ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) ) | 
						
							| 10 | 1 2 | dvdmsscn |  |-  ( ph -> X C_ CC ) | 
						
							| 11 | 10 3 4 5 7 9 | etransclem4 |  |-  ( ph -> F = E ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ph -> ( S Dn F ) = ( S Dn E ) ) | 
						
							| 13 | 12 | fveq1d |  |-  ( ph -> ( ( S Dn F ) ` N ) = ( ( S Dn E ) ` N ) ) | 
						
							| 14 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 15 | 10 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> X C_ CC ) | 
						
							| 16 | 3 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> P e. NN ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) | 
						
							| 18 | 15 16 7 17 | etransclem1 |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( H ` j ) : X --> CC ) | 
						
							| 19 | 1 | 3ad2ant1 |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> S e. { RR , CC } ) | 
						
							| 20 | 2 | 3ad2ant1 |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 21 | 3 | 3ad2ant1 |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> P e. NN ) | 
						
							| 22 |  | etransclem5 |  |-  ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 23 | 7 22 | eqtri |  |-  H = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 24 |  | simp2 |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> j e. ( 0 ... M ) ) | 
						
							| 25 |  | elfznn0 |  |-  ( i e. ( 0 ... N ) -> i e. NN0 ) | 
						
							| 26 | 25 | 3ad2ant3 |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> i e. NN0 ) | 
						
							| 27 | 19 20 21 23 24 26 | etransclem20 |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> ( ( S Dn ( H ` j ) ) ` i ) : X --> CC ) | 
						
							| 28 | 1 2 14 18 6 27 9 8 | dvnprod |  |-  ( ph -> ( ( S Dn E ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) ) | 
						
							| 29 | 13 28 | eqtrd |  |-  ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) ) |