| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( x = y -> ( x - j ) = ( y - j ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( x = y -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 3 | 2 | cbvmptv |  |-  ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( j = k -> ( y - j ) = ( y - k ) ) | 
						
							| 5 |  | eqeq1 |  |-  ( j = k -> ( j = 0 <-> k = 0 ) ) | 
						
							| 6 | 5 | ifbid |  |-  ( j = k -> if ( j = 0 , ( P - 1 ) , P ) = if ( k = 0 , ( P - 1 ) , P ) ) | 
						
							| 7 | 4 6 | oveq12d |  |-  ( j = k -> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 8 | 7 | mpteq2dv |  |-  ( j = k -> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 9 | 3 8 | eqtrid |  |-  ( j = k -> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 10 | 9 | cbvmptv |  |-  ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |