Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = y -> ( x - j ) = ( y - j ) ) |
2 |
1
|
oveq1d |
|- ( x = y -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
3 |
2
|
cbvmptv |
|- ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
4 |
|
oveq2 |
|- ( j = k -> ( y - j ) = ( y - k ) ) |
5 |
|
eqeq1 |
|- ( j = k -> ( j = 0 <-> k = 0 ) ) |
6 |
5
|
ifbid |
|- ( j = k -> if ( j = 0 , ( P - 1 ) , P ) = if ( k = 0 , ( P - 1 ) , P ) ) |
7 |
4 6
|
oveq12d |
|- ( j = k -> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) |
8 |
7
|
mpteq2dv |
|- ( j = k -> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
9 |
3 8
|
eqtrid |
|- ( j = k -> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
10 |
9
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |