Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|- ( ( k e. ZZ /\ k =/= 0 ) -> 1 e. RR ) |
2 |
|
nn0abscl |
|- ( k e. ZZ -> ( abs ` k ) e. NN0 ) |
3 |
2
|
nn0red |
|- ( k e. ZZ -> ( abs ` k ) e. RR ) |
4 |
3
|
adantr |
|- ( ( k e. ZZ /\ k =/= 0 ) -> ( abs ` k ) e. RR ) |
5 |
|
nnabscl |
|- ( ( k e. ZZ /\ k =/= 0 ) -> ( abs ` k ) e. NN ) |
6 |
5
|
nnge1d |
|- ( ( k e. ZZ /\ k =/= 0 ) -> 1 <_ ( abs ` k ) ) |
7 |
1 4 6
|
lensymd |
|- ( ( k e. ZZ /\ k =/= 0 ) -> -. ( abs ` k ) < 1 ) |
8 |
|
nan |
|- ( ( k e. ZZ -> -. ( k =/= 0 /\ ( abs ` k ) < 1 ) ) <-> ( ( k e. ZZ /\ k =/= 0 ) -> -. ( abs ` k ) < 1 ) ) |
9 |
7 8
|
mpbir |
|- ( k e. ZZ -> -. ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |
10 |
9
|
nrex |
|- -. E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) |
11 |
|
ere |
|- _e e. RR |
12 |
11
|
recni |
|- _e e. CC |
13 |
|
neldif |
|- ( ( _e e. CC /\ -. _e e. ( CC \ AA ) ) -> _e e. AA ) |
14 |
12 13
|
mpan |
|- ( -. _e e. ( CC \ AA ) -> _e e. AA ) |
15 |
|
ene0 |
|- _e =/= 0 |
16 |
|
elsng |
|- ( _e e. CC -> ( _e e. { 0 } <-> _e = 0 ) ) |
17 |
12 16
|
ax-mp |
|- ( _e e. { 0 } <-> _e = 0 ) |
18 |
15 17
|
nemtbir |
|- -. _e e. { 0 } |
19 |
18
|
a1i |
|- ( -. _e e. ( CC \ AA ) -> -. _e e. { 0 } ) |
20 |
14 19
|
eldifd |
|- ( -. _e e. ( CC \ AA ) -> _e e. ( AA \ { 0 } ) ) |
21 |
|
elaa2 |
|- ( _e e. ( AA \ { 0 } ) <-> ( _e e. CC /\ E. q e. ( Poly ` ZZ ) ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) ) |
22 |
20 21
|
sylib |
|- ( -. _e e. ( CC \ AA ) -> ( _e e. CC /\ E. q e. ( Poly ` ZZ ) ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) ) |
23 |
22
|
simprd |
|- ( -. _e e. ( CC \ AA ) -> E. q e. ( Poly ` ZZ ) ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) |
24 |
|
simpl |
|- ( ( q e. ( Poly ` ZZ ) /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> q e. ( Poly ` ZZ ) ) |
25 |
|
0nn0 |
|- 0 e. NN0 |
26 |
|
n0p |
|- ( ( q e. ( Poly ` ZZ ) /\ 0 e. NN0 /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> q =/= 0p ) |
27 |
25 26
|
mp3an2 |
|- ( ( q e. ( Poly ` ZZ ) /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> q =/= 0p ) |
28 |
|
nelsn |
|- ( q =/= 0p -> -. q e. { 0p } ) |
29 |
27 28
|
syl |
|- ( ( q e. ( Poly ` ZZ ) /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> -. q e. { 0p } ) |
30 |
24 29
|
eldifd |
|- ( ( q e. ( Poly ` ZZ ) /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> q e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
31 |
30
|
adantrr |
|- ( ( q e. ( Poly ` ZZ ) /\ ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) -> q e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
32 |
|
simprr |
|- ( ( q e. ( Poly ` ZZ ) /\ ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) -> ( q ` _e ) = 0 ) |
33 |
|
eqid |
|- ( coeff ` q ) = ( coeff ` q ) |
34 |
|
simprl |
|- ( ( q e. ( Poly ` ZZ ) /\ ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) -> ( ( coeff ` q ) ` 0 ) =/= 0 ) |
35 |
|
eqid |
|- ( deg ` q ) = ( deg ` q ) |
36 |
|
eqid |
|- sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) = sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) |
37 |
|
eqid |
|- ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) = ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
38 |
|
fveq2 |
|- ( h = l -> ( ( coeff ` q ) ` h ) = ( ( coeff ` q ) ` l ) ) |
39 |
|
oveq2 |
|- ( h = l -> ( _e ^c h ) = ( _e ^c l ) ) |
40 |
38 39
|
oveq12d |
|- ( h = l -> ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) = ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) |
41 |
40
|
fveq2d |
|- ( h = l -> ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) = ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) ) |
42 |
41
|
oveq1d |
|- ( h = l -> ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) = ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) ) |
43 |
42
|
cbvsumv |
|- sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) = sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) |
44 |
43
|
a1i |
|- ( m = n -> sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) = sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) ) |
45 |
|
oveq2 |
|- ( m = n -> ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) = ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) ) |
46 |
|
fveq2 |
|- ( m = n -> ( ! ` m ) = ( ! ` n ) ) |
47 |
45 46
|
oveq12d |
|- ( m = n -> ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) = ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) |
48 |
44 47
|
oveq12d |
|- ( m = n -> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) = ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
49 |
48
|
cbvmptv |
|- ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) = ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
50 |
49
|
a1i |
|- ( m = n -> ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) = ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ) |
51 |
|
id |
|- ( m = n -> m = n ) |
52 |
50 51
|
fveq12d |
|- ( m = n -> ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) = ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) |
53 |
52
|
fveq2d |
|- ( m = n -> ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) = ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) ) |
54 |
53
|
breq1d |
|- ( m = n -> ( ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 <-> ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 ) ) |
55 |
54
|
cbvralvw |
|- ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 <-> A. n e. ( ZZ>= ` j ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 ) |
56 |
|
fveq2 |
|- ( j = i -> ( ZZ>= ` j ) = ( ZZ>= ` i ) ) |
57 |
56
|
raleqdv |
|- ( j = i -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 <-> A. n e. ( ZZ>= ` i ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 ) ) |
58 |
55 57
|
syl5bb |
|- ( j = i -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 <-> A. n e. ( ZZ>= ` i ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 ) ) |
59 |
58
|
cbvrabv |
|- { j e. NN0 | A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 } = { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 } |
60 |
59
|
infeq1i |
|- inf ( { j e. NN0 | A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 } , RR , < ) = inf ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 } , RR , < ) |
61 |
|
eqid |
|- sup ( { ( abs ` ( ( coeff ` q ) ` 0 ) ) , ( ! ` ( deg ` q ) ) , inf ( { j e. NN0 | A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 } , RR , < ) } , RR* , < ) = sup ( { ( abs ` ( ( coeff ` q ) ` 0 ) ) , ( ! ` ( deg ` q ) ) , inf ( { j e. NN0 | A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 } , RR , < ) } , RR* , < ) |
62 |
31 32 33 34 35 36 37 60 61
|
etransclem48 |
|- ( ( q e. ( Poly ` ZZ ) /\ ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |
63 |
62
|
rexlimiva |
|- ( E. q e. ( Poly ` ZZ ) ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |
64 |
23 63
|
syl |
|- ( -. _e e. ( CC \ AA ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |
65 |
10 64
|
mt3 |
|- _e e. ( CC \ AA ) |