| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑘  ≠  0 )  →  1  ∈  ℝ ) | 
						
							| 2 |  | nn0abscl | ⊢ ( 𝑘  ∈  ℤ  →  ( abs ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 3 | 2 | nn0red | ⊢ ( 𝑘  ∈  ℤ  →  ( abs ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑘  ≠  0 )  →  ( abs ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 5 |  | nnabscl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑘  ≠  0 )  →  ( abs ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 6 | 5 | nnge1d | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑘  ≠  0 )  →  1  ≤  ( abs ‘ 𝑘 ) ) | 
						
							| 7 | 1 4 6 | lensymd | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑘  ≠  0 )  →  ¬  ( abs ‘ 𝑘 )  <  1 ) | 
						
							| 8 |  | nan | ⊢ ( ( 𝑘  ∈  ℤ  →  ¬  ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) )  ↔  ( ( 𝑘  ∈  ℤ  ∧  𝑘  ≠  0 )  →  ¬  ( abs ‘ 𝑘 )  <  1 ) ) | 
						
							| 9 | 7 8 | mpbir | ⊢ ( 𝑘  ∈  ℤ  →  ¬  ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) | 
						
							| 10 | 9 | nrex | ⊢ ¬  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) | 
						
							| 11 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 12 | 11 | recni | ⊢ e  ∈  ℂ | 
						
							| 13 |  | neldif | ⊢ ( ( e  ∈  ℂ  ∧  ¬  e  ∈  ( ℂ  ∖  𝔸 ) )  →  e  ∈  𝔸 ) | 
						
							| 14 | 12 13 | mpan | ⊢ ( ¬  e  ∈  ( ℂ  ∖  𝔸 )  →  e  ∈  𝔸 ) | 
						
							| 15 |  | ene0 | ⊢ e  ≠  0 | 
						
							| 16 |  | elsng | ⊢ ( e  ∈  ℂ  →  ( e  ∈  { 0 }  ↔  e  =  0 ) ) | 
						
							| 17 | 12 16 | ax-mp | ⊢ ( e  ∈  { 0 }  ↔  e  =  0 ) | 
						
							| 18 | 15 17 | nemtbir | ⊢ ¬  e  ∈  { 0 } | 
						
							| 19 | 18 | a1i | ⊢ ( ¬  e  ∈  ( ℂ  ∖  𝔸 )  →  ¬  e  ∈  { 0 } ) | 
						
							| 20 | 14 19 | eldifd | ⊢ ( ¬  e  ∈  ( ℂ  ∖  𝔸 )  →  e  ∈  ( 𝔸  ∖  { 0 } ) ) | 
						
							| 21 |  | elaa2 | ⊢ ( e  ∈  ( 𝔸  ∖  { 0 } )  ↔  ( e  ∈  ℂ  ∧  ∃ 𝑞  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0  ∧  ( 𝑞 ‘ e )  =  0 ) ) ) | 
						
							| 22 | 20 21 | sylib | ⊢ ( ¬  e  ∈  ( ℂ  ∖  𝔸 )  →  ( e  ∈  ℂ  ∧  ∃ 𝑞  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0  ∧  ( 𝑞 ‘ e )  =  0 ) ) ) | 
						
							| 23 | 22 | simprd | ⊢ ( ¬  e  ∈  ( ℂ  ∖  𝔸 )  →  ∃ 𝑞  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0  ∧  ( 𝑞 ‘ e )  =  0 ) ) | 
						
							| 24 |  | simpl | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0 )  →  𝑞  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 25 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 26 |  | n0p | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  0  ∈  ℕ0  ∧  ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0 )  →  𝑞  ≠  0𝑝 ) | 
						
							| 27 | 25 26 | mp3an2 | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0 )  →  𝑞  ≠  0𝑝 ) | 
						
							| 28 |  | nelsn | ⊢ ( 𝑞  ≠  0𝑝  →  ¬  𝑞  ∈  { 0𝑝 } ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0 )  →  ¬  𝑞  ∈  { 0𝑝 } ) | 
						
							| 30 | 24 29 | eldifd | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0 )  →  𝑞  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 31 | 30 | adantrr | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0  ∧  ( 𝑞 ‘ e )  =  0 ) )  →  𝑞  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 32 |  | simprr | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0  ∧  ( 𝑞 ‘ e )  =  0 ) )  →  ( 𝑞 ‘ e )  =  0 ) | 
						
							| 33 |  | eqid | ⊢ ( coeff ‘ 𝑞 )  =  ( coeff ‘ 𝑞 ) | 
						
							| 34 |  | simprl | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0  ∧  ( 𝑞 ‘ e )  =  0 ) )  →  ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0 ) | 
						
							| 35 |  | eqid | ⊢ ( deg ‘ 𝑞 )  =  ( deg ‘ 𝑞 ) | 
						
							| 36 |  | eqid | ⊢ Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  =  Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( ℎ  =  𝑙  →  ( ( coeff ‘ 𝑞 ) ‘ ℎ )  =  ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( ℎ  =  𝑙  →  ( e ↑𝑐 ℎ )  =  ( e ↑𝑐 𝑙 ) ) | 
						
							| 40 | 38 39 | oveq12d | ⊢ ( ℎ  =  𝑙  →  ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) )  =  ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ℎ  =  𝑙  →  ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  =  ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ℎ  =  𝑙  →  ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  =  ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) ) ) | 
						
							| 43 | 42 | cbvsumv | ⊢ Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  =  Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) ) | 
						
							| 44 | 43 | a1i | ⊢ ( 𝑚  =  𝑛  →  Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  =  Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) ) ) | 
						
							| 45 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  =  ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ! ‘ 𝑚 )  =  ( ! ‘ 𝑛 ) ) | 
						
							| 47 | 45 46 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) )  =  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 48 | 44 47 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) )  =  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 49 | 48 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 50 | 49 | a1i | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ) | 
						
							| 51 |  | id | ⊢ ( 𝑚  =  𝑛  →  𝑚  =  𝑛 ) | 
						
							| 52 | 50 51 | fveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 )  =  ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( abs ‘ ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) )  =  ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 54 | 53 | breq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( abs ‘ ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) )  <  1  ↔  ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 55 | 54 | cbvralvw | ⊢ ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) )  <  1  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) )  <  1 ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑖 ) ) | 
						
							| 57 | 56 | raleqdv | ⊢ ( 𝑗  =  𝑖  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) )  <  1  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 58 | 55 57 | bitrid | ⊢ ( 𝑗  =  𝑖  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) )  <  1  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 59 | 58 | cbvrabv | ⊢ { 𝑗  ∈  ℕ0  ∣  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) )  <  1 }  =  { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) )  <  1 } | 
						
							| 60 | 59 | infeq1i | ⊢ inf ( { 𝑗  ∈  ℕ0  ∣  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) )  <  1 } ,  ℝ ,   <  )  =  inf ( { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑙  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 )  ·  ( e ↑𝑐 𝑙 ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) )  <  1 } ,  ℝ ,   <  ) | 
						
							| 61 |  | eqid | ⊢ sup ( { ( abs ‘ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ) ,  ( ! ‘ ( deg ‘ 𝑞 ) ) ,  inf ( { 𝑗  ∈  ℕ0  ∣  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) )  <  1 } ,  ℝ ,   <  ) } ,  ℝ* ,   <  )  =  sup ( { ( abs ‘ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ) ,  ( ! ‘ ( deg ‘ 𝑞 ) ) ,  inf ( { 𝑗  ∈  ℕ0  ∣  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚  ∈  ℕ0  ↦  ( Σ ℎ  ∈  ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ )  ·  ( e ↑𝑐 ℎ ) ) )  ·  ( ( deg ‘ 𝑞 )  ·  ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ) )  ·  ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 )  +  1 ) ) ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) )  <  1 } ,  ℝ ,   <  ) } ,  ℝ* ,   <  ) | 
						
							| 62 | 31 32 33 34 35 36 37 60 61 | etransclem48 | ⊢ ( ( 𝑞  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0  ∧  ( 𝑞 ‘ e )  =  0 ) )  →  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) | 
						
							| 63 | 62 | rexlimiva | ⊢ ( ∃ 𝑞  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑞 ) ‘ 0 )  ≠  0  ∧  ( 𝑞 ‘ e )  =  0 )  →  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) | 
						
							| 64 | 23 63 | syl | ⊢ ( ¬  e  ∈  ( ℂ  ∖  𝔸 )  →  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) | 
						
							| 65 | 10 64 | mt3 | ⊢ e  ∈  ( ℂ  ∖  𝔸 ) |