| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( P = 0p -> ( coeff ` P ) = ( coeff ` 0p ) ) |
| 2 |
|
coe0 |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |
| 3 |
2
|
a1i |
|- ( P = 0p -> ( coeff ` 0p ) = ( NN0 X. { 0 } ) ) |
| 4 |
1 3
|
eqtrd |
|- ( P = 0p -> ( coeff ` P ) = ( NN0 X. { 0 } ) ) |
| 5 |
4
|
fveq1d |
|- ( P = 0p -> ( ( coeff ` P ) ` N ) = ( ( NN0 X. { 0 } ) ` N ) ) |
| 6 |
5
|
adantl |
|- ( ( N e. NN0 /\ P = 0p ) -> ( ( coeff ` P ) ` N ) = ( ( NN0 X. { 0 } ) ` N ) ) |
| 7 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
| 8 |
|
c0ex |
|- 0 e. _V |
| 9 |
8
|
fvconst2 |
|- ( N e. NN0 -> ( ( NN0 X. { 0 } ) ` N ) = 0 ) |
| 10 |
7 9
|
syl |
|- ( N e. NN0 -> ( ( NN0 X. { 0 } ) ` N ) = 0 ) |
| 11 |
10
|
adantr |
|- ( ( N e. NN0 /\ P = 0p ) -> ( ( NN0 X. { 0 } ) ` N ) = 0 ) |
| 12 |
6 11
|
eqtrd |
|- ( ( N e. NN0 /\ P = 0p ) -> ( ( coeff ` P ) ` N ) = 0 ) |
| 13 |
12
|
3ad2antl2 |
|- ( ( ( P e. ( Poly ` ZZ ) /\ N e. NN0 /\ ( ( coeff ` P ) ` N ) =/= 0 ) /\ P = 0p ) -> ( ( coeff ` P ) ` N ) = 0 ) |
| 14 |
|
neneq |
|- ( ( ( coeff ` P ) ` N ) =/= 0 -> -. ( ( coeff ` P ) ` N ) = 0 ) |
| 15 |
14
|
adantr |
|- ( ( ( ( coeff ` P ) ` N ) =/= 0 /\ P = 0p ) -> -. ( ( coeff ` P ) ` N ) = 0 ) |
| 16 |
15
|
3ad2antl3 |
|- ( ( ( P e. ( Poly ` ZZ ) /\ N e. NN0 /\ ( ( coeff ` P ) ` N ) =/= 0 ) /\ P = 0p ) -> -. ( ( coeff ` P ) ` N ) = 0 ) |
| 17 |
13 16
|
pm2.65da |
|- ( ( P e. ( Poly ` ZZ ) /\ N e. NN0 /\ ( ( coeff ` P ) ` N ) =/= 0 ) -> -. P = 0p ) |
| 18 |
17
|
neqned |
|- ( ( P e. ( Poly ` ZZ ) /\ N e. NN0 /\ ( ( coeff ` P ) ` N ) =/= 0 ) -> P =/= 0p ) |