Metamath Proof Explorer


Theorem n0p

Description: A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion n0p PPolyN0coeffPN0P0𝑝

Proof

Step Hyp Ref Expression
1 fveq2 P=0𝑝coeffP=coeff0𝑝
2 coe0 coeff0𝑝=0×0
3 2 a1i P=0𝑝coeff0𝑝=0×0
4 1 3 eqtrd P=0𝑝coeffP=0×0
5 4 fveq1d P=0𝑝coeffPN=0×0N
6 5 adantl N0P=0𝑝coeffPN=0×0N
7 id N0N0
8 c0ex 0V
9 8 fvconst2 N00×0N=0
10 7 9 syl N00×0N=0
11 10 adantr N0P=0𝑝0×0N=0
12 6 11 eqtrd N0P=0𝑝coeffPN=0
13 12 3ad2antl2 PPolyN0coeffPN0P=0𝑝coeffPN=0
14 neneq coeffPN0¬coeffPN=0
15 14 adantr coeffPN0P=0𝑝¬coeffPN=0
16 15 3ad2antl3 PPolyN0coeffPN0P=0𝑝¬coeffPN=0
17 13 16 pm2.65da PPolyN0coeffPN0¬P=0𝑝
18 17 neqned PPolyN0coeffPN0P0𝑝