| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aasscn |  |-  AA C_ CC | 
						
							| 2 |  | eldifi |  |-  ( A e. ( AA \ { 0 } ) -> A e. AA ) | 
						
							| 3 | 1 2 | sselid |  |-  ( A e. ( AA \ { 0 } ) -> A e. CC ) | 
						
							| 4 |  | elaa |  |-  ( A e. AA <-> ( A e. CC /\ E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` A ) = 0 ) ) | 
						
							| 5 | 2 4 | sylib |  |-  ( A e. ( AA \ { 0 } ) -> ( A e. CC /\ E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` A ) = 0 ) ) | 
						
							| 6 | 5 | simprd |  |-  ( A e. ( AA \ { 0 } ) -> E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` A ) = 0 ) | 
						
							| 7 | 2 | 3ad2ant1 |  |-  ( ( A e. ( AA \ { 0 } ) /\ g e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( g ` A ) = 0 ) -> A e. AA ) | 
						
							| 8 |  | eldifsni |  |-  ( A e. ( AA \ { 0 } ) -> A =/= 0 ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( A e. ( AA \ { 0 } ) /\ g e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( g ` A ) = 0 ) -> A =/= 0 ) | 
						
							| 10 |  | eldifi |  |-  ( g e. ( ( Poly ` ZZ ) \ { 0p } ) -> g e. ( Poly ` ZZ ) ) | 
						
							| 11 | 10 | 3ad2ant2 |  |-  ( ( A e. ( AA \ { 0 } ) /\ g e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( g ` A ) = 0 ) -> g e. ( Poly ` ZZ ) ) | 
						
							| 12 |  | eldifsni |  |-  ( g e. ( ( Poly ` ZZ ) \ { 0p } ) -> g =/= 0p ) | 
						
							| 13 | 12 | 3ad2ant2 |  |-  ( ( A e. ( AA \ { 0 } ) /\ g e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( g ` A ) = 0 ) -> g =/= 0p ) | 
						
							| 14 |  | simp3 |  |-  ( ( A e. ( AA \ { 0 } ) /\ g e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( g ` A ) = 0 ) -> ( g ` A ) = 0 ) | 
						
							| 15 |  | fveq2 |  |-  ( m = n -> ( ( coeff ` g ) ` m ) = ( ( coeff ` g ) ` n ) ) | 
						
							| 16 | 15 | neeq1d |  |-  ( m = n -> ( ( ( coeff ` g ) ` m ) =/= 0 <-> ( ( coeff ` g ) ` n ) =/= 0 ) ) | 
						
							| 17 | 16 | cbvrabv |  |-  { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } = { n e. NN0 | ( ( coeff ` g ) ` n ) =/= 0 } | 
						
							| 18 | 17 | infeq1i |  |-  inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) = inf ( { n e. NN0 | ( ( coeff ` g ) ` n ) =/= 0 } , RR , < ) | 
						
							| 19 |  | fvoveq1 |  |-  ( j = k -> ( ( coeff ` g ) ` ( j + inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) ) ) = ( ( coeff ` g ) ` ( k + inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) ) ) ) | 
						
							| 20 | 19 | cbvmptv |  |-  ( j e. NN0 |-> ( ( coeff ` g ) ` ( j + inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) ) ) ) = ( k e. NN0 |-> ( ( coeff ` g ) ` ( k + inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) ) ) ) | 
						
							| 21 |  | eqid |  |-  ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` g ) - inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) ) ) ( ( ( j e. NN0 |-> ( ( coeff ` g ) ` ( j + inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) ) ) ) ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` g ) - inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) ) ) ( ( ( j e. NN0 |-> ( ( coeff ` g ) ` ( j + inf ( { m e. NN0 | ( ( coeff ` g ) ` m ) =/= 0 } , RR , < ) ) ) ) ` k ) x. ( z ^ k ) ) ) | 
						
							| 22 | 7 9 11 13 14 18 20 21 | elaa2lem |  |-  ( ( A e. ( AA \ { 0 } ) /\ g e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( g ` A ) = 0 ) -> E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) | 
						
							| 23 | 22 | rexlimdv3a |  |-  ( A e. ( AA \ { 0 } ) -> ( E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` A ) = 0 -> E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) ) | 
						
							| 24 | 6 23 | mpd |  |-  ( A e. ( AA \ { 0 } ) -> E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) | 
						
							| 25 | 3 24 | jca |  |-  ( A e. ( AA \ { 0 } ) -> ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) ) | 
						
							| 26 |  | simpl |  |-  ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) -> f e. ( Poly ` ZZ ) ) | 
						
							| 27 |  | fveq2 |  |-  ( f = 0p -> ( coeff ` f ) = ( coeff ` 0p ) ) | 
						
							| 28 |  | coe0 |  |-  ( coeff ` 0p ) = ( NN0 X. { 0 } ) | 
						
							| 29 | 27 28 | eqtrdi |  |-  ( f = 0p -> ( coeff ` f ) = ( NN0 X. { 0 } ) ) | 
						
							| 30 | 29 | fveq1d |  |-  ( f = 0p -> ( ( coeff ` f ) ` 0 ) = ( ( NN0 X. { 0 } ) ` 0 ) ) | 
						
							| 31 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 32 |  | fvconst2g |  |-  ( ( 0 e. NN0 /\ 0 e. NN0 ) -> ( ( NN0 X. { 0 } ) ` 0 ) = 0 ) | 
						
							| 33 | 31 31 32 | mp2an |  |-  ( ( NN0 X. { 0 } ) ` 0 ) = 0 | 
						
							| 34 | 30 33 | eqtrdi |  |-  ( f = 0p -> ( ( coeff ` f ) ` 0 ) = 0 ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) /\ f = 0p ) -> ( ( coeff ` f ) ` 0 ) = 0 ) | 
						
							| 36 |  | neneq |  |-  ( ( ( coeff ` f ) ` 0 ) =/= 0 -> -. ( ( coeff ` f ) ` 0 ) = 0 ) | 
						
							| 37 | 36 | ad2antlr |  |-  ( ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) /\ f = 0p ) -> -. ( ( coeff ` f ) ` 0 ) = 0 ) | 
						
							| 38 | 35 37 | pm2.65da |  |-  ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) -> -. f = 0p ) | 
						
							| 39 |  | velsn |  |-  ( f e. { 0p } <-> f = 0p ) | 
						
							| 40 | 38 39 | sylnibr |  |-  ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) -> -. f e. { 0p } ) | 
						
							| 41 | 26 40 | eldifd |  |-  ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) -> f e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 42 | 41 | adantrr |  |-  ( ( f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> f e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 43 |  | simprr |  |-  ( ( f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> ( f ` A ) = 0 ) | 
						
							| 44 | 42 43 | jca |  |-  ( ( f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) | 
						
							| 45 | 44 | reximi2 |  |-  ( E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) | 
						
							| 46 | 45 | anim2i |  |-  ( ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) | 
						
							| 47 |  | elaa |  |-  ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) | 
						
							| 48 | 46 47 | sylibr |  |-  ( ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> A e. AA ) | 
						
							| 49 |  | simpr |  |-  ( ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) | 
						
							| 50 |  | nfv |  |-  F/ f A e. CC | 
						
							| 51 |  | nfre1 |  |-  F/ f E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) | 
						
							| 52 | 50 51 | nfan |  |-  F/ f ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) | 
						
							| 53 |  | nfv |  |-  F/ f -. A e. { 0 } | 
						
							| 54 |  | simpl3r |  |-  ( ( ( A e. CC /\ f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) /\ A = 0 ) -> ( f ` A ) = 0 ) | 
						
							| 55 |  | fveq2 |  |-  ( A = 0 -> ( f ` A ) = ( f ` 0 ) ) | 
						
							| 56 |  | eqid |  |-  ( coeff ` f ) = ( coeff ` f ) | 
						
							| 57 | 56 | coefv0 |  |-  ( f e. ( Poly ` ZZ ) -> ( f ` 0 ) = ( ( coeff ` f ) ` 0 ) ) | 
						
							| 58 | 55 57 | sylan9eqr |  |-  ( ( f e. ( Poly ` ZZ ) /\ A = 0 ) -> ( f ` A ) = ( ( coeff ` f ) ` 0 ) ) | 
						
							| 59 | 58 | adantlr |  |-  ( ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) /\ A = 0 ) -> ( f ` A ) = ( ( coeff ` f ) ` 0 ) ) | 
						
							| 60 |  | simplr |  |-  ( ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) /\ A = 0 ) -> ( ( coeff ` f ) ` 0 ) =/= 0 ) | 
						
							| 61 | 59 60 | eqnetrd |  |-  ( ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) /\ A = 0 ) -> ( f ` A ) =/= 0 ) | 
						
							| 62 | 61 | neneqd |  |-  ( ( ( f e. ( Poly ` ZZ ) /\ ( ( coeff ` f ) ` 0 ) =/= 0 ) /\ A = 0 ) -> -. ( f ` A ) = 0 ) | 
						
							| 63 | 62 | adantlrr |  |-  ( ( ( f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) /\ A = 0 ) -> -. ( f ` A ) = 0 ) | 
						
							| 64 | 63 | 3adantl1 |  |-  ( ( ( A e. CC /\ f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) /\ A = 0 ) -> -. ( f ` A ) = 0 ) | 
						
							| 65 | 54 64 | pm2.65da |  |-  ( ( A e. CC /\ f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> -. A = 0 ) | 
						
							| 66 |  | elsng |  |-  ( A e. CC -> ( A e. { 0 } <-> A = 0 ) ) | 
						
							| 67 | 66 | biimpa |  |-  ( ( A e. CC /\ A e. { 0 } ) -> A = 0 ) | 
						
							| 68 | 67 | 3ad2antl1 |  |-  ( ( ( A e. CC /\ f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) /\ A e. { 0 } ) -> A = 0 ) | 
						
							| 69 | 65 68 | mtand |  |-  ( ( A e. CC /\ f e. ( Poly ` ZZ ) /\ ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> -. A e. { 0 } ) | 
						
							| 70 | 69 | 3exp |  |-  ( A e. CC -> ( f e. ( Poly ` ZZ ) -> ( ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) -> -. A e. { 0 } ) ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> ( f e. ( Poly ` ZZ ) -> ( ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) -> -. A e. { 0 } ) ) ) | 
						
							| 72 | 52 53 71 | rexlimd |  |-  ( ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> ( E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) -> -. A e. { 0 } ) ) | 
						
							| 73 | 49 72 | mpd |  |-  ( ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> -. A e. { 0 } ) | 
						
							| 74 | 48 73 | eldifd |  |-  ( ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) -> A e. ( AA \ { 0 } ) ) | 
						
							| 75 | 25 74 | impbii |  |-  ( A e. ( AA \ { 0 } ) <-> ( A e. CC /\ E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) ) |