| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elaa2lem.a |  |-  ( ph -> A e. AA ) | 
						
							| 2 |  | elaa2lem.an0 |  |-  ( ph -> A =/= 0 ) | 
						
							| 3 |  | elaa2lem.g |  |-  ( ph -> G e. ( Poly ` ZZ ) ) | 
						
							| 4 |  | elaa2lem.gn0 |  |-  ( ph -> G =/= 0p ) | 
						
							| 5 |  | elaa2lem.ga |  |-  ( ph -> ( G ` A ) = 0 ) | 
						
							| 6 |  | elaa2lem.m |  |-  M = inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) | 
						
							| 7 |  | elaa2lem.i |  |-  I = ( k e. NN0 |-> ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 8 |  | elaa2lem.f |  |-  F = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 10 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ZZ C_ CC ) | 
						
							| 12 |  | dgrcl |  |-  ( G e. ( Poly ` ZZ ) -> ( deg ` G ) e. NN0 ) | 
						
							| 13 | 3 12 | syl |  |-  ( ph -> ( deg ` G ) e. NN0 ) | 
						
							| 14 | 13 | nn0zd |  |-  ( ph -> ( deg ` G ) e. ZZ ) | 
						
							| 15 |  | ssrab2 |  |-  { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ NN0 | 
						
							| 16 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 17 | 15 16 | sseqtri |  |-  { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) | 
						
							| 18 | 17 | a1i |  |-  ( ph -> { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) ) | 
						
							| 19 | 4 | neneqd |  |-  ( ph -> -. G = 0p ) | 
						
							| 20 |  | eqid |  |-  ( deg ` G ) = ( deg ` G ) | 
						
							| 21 |  | eqid |  |-  ( coeff ` G ) = ( coeff ` G ) | 
						
							| 22 | 20 21 | dgreq0 |  |-  ( G e. ( Poly ` ZZ ) -> ( G = 0p <-> ( ( coeff ` G ) ` ( deg ` G ) ) = 0 ) ) | 
						
							| 23 | 3 22 | syl |  |-  ( ph -> ( G = 0p <-> ( ( coeff ` G ) ` ( deg ` G ) ) = 0 ) ) | 
						
							| 24 | 19 23 | mtbid |  |-  ( ph -> -. ( ( coeff ` G ) ` ( deg ` G ) ) = 0 ) | 
						
							| 25 | 24 | neqned |  |-  ( ph -> ( ( coeff ` G ) ` ( deg ` G ) ) =/= 0 ) | 
						
							| 26 | 13 25 | jca |  |-  ( ph -> ( ( deg ` G ) e. NN0 /\ ( ( coeff ` G ) ` ( deg ` G ) ) =/= 0 ) ) | 
						
							| 27 |  | fveq2 |  |-  ( n = ( deg ` G ) -> ( ( coeff ` G ) ` n ) = ( ( coeff ` G ) ` ( deg ` G ) ) ) | 
						
							| 28 | 27 | neeq1d |  |-  ( n = ( deg ` G ) -> ( ( ( coeff ` G ) ` n ) =/= 0 <-> ( ( coeff ` G ) ` ( deg ` G ) ) =/= 0 ) ) | 
						
							| 29 | 28 | elrab |  |-  ( ( deg ` G ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } <-> ( ( deg ` G ) e. NN0 /\ ( ( coeff ` G ) ` ( deg ` G ) ) =/= 0 ) ) | 
						
							| 30 | 26 29 | sylibr |  |-  ( ph -> ( deg ` G ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) | 
						
							| 31 | 30 | ne0d |  |-  ( ph -> { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } =/= (/) ) | 
						
							| 32 |  | infssuzcl |  |-  ( ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) /\ { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } =/= (/) ) -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) | 
						
							| 33 | 18 31 32 | syl2anc |  |-  ( ph -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) | 
						
							| 34 | 15 33 | sselid |  |-  ( ph -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) e. NN0 ) | 
						
							| 35 | 6 34 | eqeltrid |  |-  ( ph -> M e. NN0 ) | 
						
							| 36 | 35 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 37 | 14 36 | zsubcld |  |-  ( ph -> ( ( deg ` G ) - M ) e. ZZ ) | 
						
							| 38 | 6 | a1i |  |-  ( ph -> M = inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) ) | 
						
							| 39 |  | infssuzle |  |-  ( ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) /\ ( deg ` G ) e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) <_ ( deg ` G ) ) | 
						
							| 40 | 18 30 39 | syl2anc |  |-  ( ph -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) <_ ( deg ` G ) ) | 
						
							| 41 | 38 40 | eqbrtrd |  |-  ( ph -> M <_ ( deg ` G ) ) | 
						
							| 42 | 13 | nn0red |  |-  ( ph -> ( deg ` G ) e. RR ) | 
						
							| 43 | 35 | nn0red |  |-  ( ph -> M e. RR ) | 
						
							| 44 | 42 43 | subge0d |  |-  ( ph -> ( 0 <_ ( ( deg ` G ) - M ) <-> M <_ ( deg ` G ) ) ) | 
						
							| 45 | 41 44 | mpbird |  |-  ( ph -> 0 <_ ( ( deg ` G ) - M ) ) | 
						
							| 46 | 37 45 | jca |  |-  ( ph -> ( ( ( deg ` G ) - M ) e. ZZ /\ 0 <_ ( ( deg ` G ) - M ) ) ) | 
						
							| 47 |  | elnn0z |  |-  ( ( ( deg ` G ) - M ) e. NN0 <-> ( ( ( deg ` G ) - M ) e. ZZ /\ 0 <_ ( ( deg ` G ) - M ) ) ) | 
						
							| 48 | 46 47 | sylibr |  |-  ( ph -> ( ( deg ` G ) - M ) e. NN0 ) | 
						
							| 49 |  | 0zd |  |-  ( G e. ( Poly ` ZZ ) -> 0 e. ZZ ) | 
						
							| 50 | 21 | coef2 |  |-  ( ( G e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> ( coeff ` G ) : NN0 --> ZZ ) | 
						
							| 51 | 3 49 50 | syl2anc2 |  |-  ( ph -> ( coeff ` G ) : NN0 --> ZZ ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> ( coeff ` G ) : NN0 --> ZZ ) | 
						
							| 53 |  | simpr |  |-  ( ( ph /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 54 | 35 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> M e. NN0 ) | 
						
							| 55 | 53 54 | nn0addcld |  |-  ( ( ph /\ k e. NN0 ) -> ( k + M ) e. NN0 ) | 
						
							| 56 | 52 55 | ffvelcdmd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coeff ` G ) ` ( k + M ) ) e. ZZ ) | 
						
							| 57 | 56 7 | fmptd |  |-  ( ph -> I : NN0 --> ZZ ) | 
						
							| 58 |  | elplyr |  |-  ( ( ZZ C_ CC /\ ( ( deg ` G ) - M ) e. NN0 /\ I : NN0 --> ZZ ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) ) | 
						
							| 59 | 11 48 57 58 | syl3anc |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) ) | 
						
							| 60 | 9 59 | eqeltrd |  |-  ( ph -> F e. ( Poly ` ZZ ) ) | 
						
							| 61 |  | simpr |  |-  ( ( ( ph /\ k e. NN0 ) /\ k <_ ( ( deg ` G ) - M ) ) -> k <_ ( ( deg ` G ) - M ) ) | 
						
							| 62 | 61 | iftrued |  |-  ( ( ( ph /\ k e. NN0 ) /\ k <_ ( ( deg ` G ) - M ) ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 63 |  | iffalse |  |-  ( -. k <_ ( ( deg ` G ) - M ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = 0 ) | 
						
							| 64 | 63 | adantl |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = 0 ) | 
						
							| 65 |  | simpr |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> -. k <_ ( ( deg ` G ) - M ) ) | 
						
							| 66 | 42 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( deg ` G ) e. RR ) | 
						
							| 67 | 43 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> M e. RR ) | 
						
							| 68 | 66 67 | resubcld |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( deg ` G ) - M ) e. RR ) | 
						
							| 69 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 70 | 69 | ad2antlr |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> k e. RR ) | 
						
							| 71 | 68 70 | ltnled |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( ( deg ` G ) - M ) < k <-> -. k <_ ( ( deg ` G ) - M ) ) ) | 
						
							| 72 | 65 71 | mpbird |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( deg ` G ) - M ) < k ) | 
						
							| 73 | 66 67 70 | ltsubaddd |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( ( deg ` G ) - M ) < k <-> ( deg ` G ) < ( k + M ) ) ) | 
						
							| 74 | 72 73 | mpbid |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( deg ` G ) < ( k + M ) ) | 
						
							| 75 |  | olc |  |-  ( ( deg ` G ) < ( k + M ) -> ( G = 0p \/ ( deg ` G ) < ( k + M ) ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( G = 0p \/ ( deg ` G ) < ( k + M ) ) ) | 
						
							| 77 | 3 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> G e. ( Poly ` ZZ ) ) | 
						
							| 78 | 55 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( k + M ) e. NN0 ) | 
						
							| 79 | 20 21 | dgrlt |  |-  ( ( G e. ( Poly ` ZZ ) /\ ( k + M ) e. NN0 ) -> ( ( G = 0p \/ ( deg ` G ) < ( k + M ) ) <-> ( ( deg ` G ) <_ ( k + M ) /\ ( ( coeff ` G ) ` ( k + M ) ) = 0 ) ) ) | 
						
							| 80 | 77 78 79 | syl2anc |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( G = 0p \/ ( deg ` G ) < ( k + M ) ) <-> ( ( deg ` G ) <_ ( k + M ) /\ ( ( coeff ` G ) ` ( k + M ) ) = 0 ) ) ) | 
						
							| 81 | 76 80 | mpbid |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( deg ` G ) <_ ( k + M ) /\ ( ( coeff ` G ) ` ( k + M ) ) = 0 ) ) | 
						
							| 82 | 81 | simprd |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> ( ( coeff ` G ) ` ( k + M ) ) = 0 ) | 
						
							| 83 | 64 82 | eqtr4d |  |-  ( ( ( ph /\ k e. NN0 ) /\ -. k <_ ( ( deg ` G ) - M ) ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 84 | 62 83 | pm2.61dan |  |-  ( ( ph /\ k e. NN0 ) -> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 85 | 84 | mpteq2dva |  |-  ( ph -> ( k e. NN0 |-> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) ) = ( k e. NN0 |-> ( ( coeff ` G ) ` ( k + M ) ) ) ) | 
						
							| 86 | 51 11 | fssd |  |-  ( ph -> ( coeff ` G ) : NN0 --> CC ) | 
						
							| 87 | 86 | adantr |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( coeff ` G ) : NN0 --> CC ) | 
						
							| 88 |  | elfznn0 |  |-  ( k e. ( 0 ... ( ( deg ` G ) - M ) ) -> k e. NN0 ) | 
						
							| 89 | 88 | adantl |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> k e. NN0 ) | 
						
							| 90 | 35 | adantr |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> M e. NN0 ) | 
						
							| 91 | 89 90 | nn0addcld |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( k + M ) e. NN0 ) | 
						
							| 92 | 87 91 | ffvelcdmd |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( coeff ` G ) ` ( k + M ) ) e. CC ) | 
						
							| 93 |  | eqidd |  |-  ( ( ph /\ z e. CC ) -> ( 0 ... ( ( deg ` G ) - M ) ) = ( 0 ... ( ( deg ` G ) - M ) ) ) | 
						
							| 94 |  | simpl |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ph ) | 
						
							| 95 | 7 | a1i |  |-  ( ph -> I = ( k e. NN0 |-> ( ( coeff ` G ) ` ( k + M ) ) ) ) | 
						
							| 96 | 95 56 | fvmpt2d |  |-  ( ( ph /\ k e. NN0 ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 97 | 94 89 96 | syl2anc |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 98 | 97 | adantlr |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 99 | 98 | oveq1d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( I ` k ) x. ( z ^ k ) ) = ( ( ( coeff ` G ) ` ( k + M ) ) x. ( z ^ k ) ) ) | 
						
							| 100 | 93 99 | sumeq12rdv |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( z ^ k ) ) ) | 
						
							| 101 | 100 | mpteq2dva |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( z ^ k ) ) ) ) | 
						
							| 102 | 9 101 | eqtrd |  |-  ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( z ^ k ) ) ) ) | 
						
							| 103 | 60 48 92 102 | coeeq2 |  |-  ( ph -> ( coeff ` F ) = ( k e. NN0 |-> if ( k <_ ( ( deg ` G ) - M ) , ( ( coeff ` G ) ` ( k + M ) ) , 0 ) ) ) | 
						
							| 104 | 85 103 95 | 3eqtr4d |  |-  ( ph -> ( coeff ` F ) = I ) | 
						
							| 105 | 104 | fveq1d |  |-  ( ph -> ( ( coeff ` F ) ` 0 ) = ( I ` 0 ) ) | 
						
							| 106 |  | oveq1 |  |-  ( k = 0 -> ( k + M ) = ( 0 + M ) ) | 
						
							| 107 | 106 | adantl |  |-  ( ( ph /\ k = 0 ) -> ( k + M ) = ( 0 + M ) ) | 
						
							| 108 | 10 36 | sselid |  |-  ( ph -> M e. CC ) | 
						
							| 109 | 108 | addlidd |  |-  ( ph -> ( 0 + M ) = M ) | 
						
							| 110 | 109 | adantr |  |-  ( ( ph /\ k = 0 ) -> ( 0 + M ) = M ) | 
						
							| 111 | 107 110 | eqtrd |  |-  ( ( ph /\ k = 0 ) -> ( k + M ) = M ) | 
						
							| 112 | 111 | fveq2d |  |-  ( ( ph /\ k = 0 ) -> ( ( coeff ` G ) ` ( k + M ) ) = ( ( coeff ` G ) ` M ) ) | 
						
							| 113 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 114 | 113 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 115 | 51 35 | ffvelcdmd |  |-  ( ph -> ( ( coeff ` G ) ` M ) e. ZZ ) | 
						
							| 116 | 95 112 114 115 | fvmptd |  |-  ( ph -> ( I ` 0 ) = ( ( coeff ` G ) ` M ) ) | 
						
							| 117 |  | eqidd |  |-  ( ph -> ( ( coeff ` G ) ` M ) = ( ( coeff ` G ) ` M ) ) | 
						
							| 118 | 105 116 117 | 3eqtrd |  |-  ( ph -> ( ( coeff ` F ) ` 0 ) = ( ( coeff ` G ) ` M ) ) | 
						
							| 119 | 38 33 | eqeltrd |  |-  ( ph -> M e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) | 
						
							| 120 |  | fveq2 |  |-  ( n = M -> ( ( coeff ` G ) ` n ) = ( ( coeff ` G ) ` M ) ) | 
						
							| 121 | 120 | neeq1d |  |-  ( n = M -> ( ( ( coeff ` G ) ` n ) =/= 0 <-> ( ( coeff ` G ) ` M ) =/= 0 ) ) | 
						
							| 122 | 121 | elrab |  |-  ( M e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } <-> ( M e. NN0 /\ ( ( coeff ` G ) ` M ) =/= 0 ) ) | 
						
							| 123 | 119 122 | sylib |  |-  ( ph -> ( M e. NN0 /\ ( ( coeff ` G ) ` M ) =/= 0 ) ) | 
						
							| 124 | 123 | simprd |  |-  ( ph -> ( ( coeff ` G ) ` M ) =/= 0 ) | 
						
							| 125 | 118 124 | eqnetrd |  |-  ( ph -> ( ( coeff ` F ) ` 0 ) =/= 0 ) | 
						
							| 126 | 3 49 | syl |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 127 |  | aasscn |  |-  AA C_ CC | 
						
							| 128 | 127 1 | sselid |  |-  ( ph -> A e. CC ) | 
						
							| 129 | 94 128 | syl |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> A e. CC ) | 
						
							| 130 | 129 89 | expcld |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( A ^ k ) e. CC ) | 
						
							| 131 | 92 130 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) e. CC ) | 
						
							| 132 |  | fvoveq1 |  |-  ( k = ( j - M ) -> ( ( coeff ` G ) ` ( k + M ) ) = ( ( coeff ` G ) ` ( ( j - M ) + M ) ) ) | 
						
							| 133 |  | oveq2 |  |-  ( k = ( j - M ) -> ( A ^ k ) = ( A ^ ( j - M ) ) ) | 
						
							| 134 | 132 133 | oveq12d |  |-  ( k = ( j - M ) -> ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) = ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) ) | 
						
							| 135 | 36 126 37 131 134 | fsumshft |  |-  ( ph -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) = sum_ j e. ( ( 0 + M ) ... ( ( ( deg ` G ) - M ) + M ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) ) | 
						
							| 136 | 10 14 | sselid |  |-  ( ph -> ( deg ` G ) e. CC ) | 
						
							| 137 | 136 108 | npcand |  |-  ( ph -> ( ( ( deg ` G ) - M ) + M ) = ( deg ` G ) ) | 
						
							| 138 | 109 137 | oveq12d |  |-  ( ph -> ( ( 0 + M ) ... ( ( ( deg ` G ) - M ) + M ) ) = ( M ... ( deg ` G ) ) ) | 
						
							| 139 | 138 | sumeq1d |  |-  ( ph -> sum_ j e. ( ( 0 + M ) ... ( ( ( deg ` G ) - M ) + M ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = sum_ j e. ( M ... ( deg ` G ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) ) | 
						
							| 140 |  | elfzelz |  |-  ( j e. ( M ... ( deg ` G ) ) -> j e. ZZ ) | 
						
							| 141 | 140 | adantl |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> j e. ZZ ) | 
						
							| 142 | 10 141 | sselid |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> j e. CC ) | 
						
							| 143 | 108 | adantr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> M e. CC ) | 
						
							| 144 | 142 143 | npcand |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( j - M ) + M ) = j ) | 
						
							| 145 | 144 | fveq2d |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( coeff ` G ) ` ( ( j - M ) + M ) ) = ( ( coeff ` G ) ` j ) ) | 
						
							| 146 | 145 | oveq1d |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = ( ( ( coeff ` G ) ` j ) x. ( A ^ ( j - M ) ) ) ) | 
						
							| 147 | 128 | adantr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> A e. CC ) | 
						
							| 148 | 2 | adantr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> A =/= 0 ) | 
						
							| 149 | 36 | adantr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> M e. ZZ ) | 
						
							| 150 | 147 148 149 141 | expsubd |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( A ^ ( j - M ) ) = ( ( A ^ j ) / ( A ^ M ) ) ) | 
						
							| 151 | 150 | oveq2d |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ ( j - M ) ) ) = ( ( ( coeff ` G ) ` j ) x. ( ( A ^ j ) / ( A ^ M ) ) ) ) | 
						
							| 152 | 86 | adantr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( coeff ` G ) : NN0 --> CC ) | 
						
							| 153 |  | 0red |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> 0 e. RR ) | 
						
							| 154 | 43 | adantr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> M e. RR ) | 
						
							| 155 | 141 | zred |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> j e. RR ) | 
						
							| 156 | 35 | nn0ge0d |  |-  ( ph -> 0 <_ M ) | 
						
							| 157 | 156 | adantr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> 0 <_ M ) | 
						
							| 158 |  | elfzle1 |  |-  ( j e. ( M ... ( deg ` G ) ) -> M <_ j ) | 
						
							| 159 | 158 | adantl |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> M <_ j ) | 
						
							| 160 | 153 154 155 157 159 | letrd |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> 0 <_ j ) | 
						
							| 161 | 141 160 | jca |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( j e. ZZ /\ 0 <_ j ) ) | 
						
							| 162 |  | elnn0z |  |-  ( j e. NN0 <-> ( j e. ZZ /\ 0 <_ j ) ) | 
						
							| 163 | 161 162 | sylibr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> j e. NN0 ) | 
						
							| 164 | 152 163 | ffvelcdmd |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( coeff ` G ) ` j ) e. CC ) | 
						
							| 165 | 147 163 | expcld |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( A ^ j ) e. CC ) | 
						
							| 166 | 128 35 | expcld |  |-  ( ph -> ( A ^ M ) e. CC ) | 
						
							| 167 | 166 | adantr |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( A ^ M ) e. CC ) | 
						
							| 168 | 147 148 149 | expne0d |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( A ^ M ) =/= 0 ) | 
						
							| 169 | 164 165 167 168 | divassd |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = ( ( ( coeff ` G ) ` j ) x. ( ( A ^ j ) / ( A ^ M ) ) ) ) | 
						
							| 170 | 169 | eqcomd |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( ( A ^ j ) / ( A ^ M ) ) ) = ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 171 | 151 170 | eqtr2d |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = ( ( ( coeff ` G ) ` j ) x. ( A ^ ( j - M ) ) ) ) | 
						
							| 172 | 146 171 | eqtr4d |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 173 | 172 | sumeq2dv |  |-  ( ph -> sum_ j e. ( M ... ( deg ` G ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = sum_ j e. ( M ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 174 | 139 173 | eqtrd |  |-  ( ph -> sum_ j e. ( ( 0 + M ) ... ( ( ( deg ` G ) - M ) + M ) ) ( ( ( coeff ` G ) ` ( ( j - M ) + M ) ) x. ( A ^ ( j - M ) ) ) = sum_ j e. ( M ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 175 | 35 16 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 176 |  | fzss1 |  |-  ( M e. ( ZZ>= ` 0 ) -> ( M ... ( deg ` G ) ) C_ ( 0 ... ( deg ` G ) ) ) | 
						
							| 177 | 175 176 | syl |  |-  ( ph -> ( M ... ( deg ` G ) ) C_ ( 0 ... ( deg ` G ) ) ) | 
						
							| 178 | 164 165 | mulcld |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) e. CC ) | 
						
							| 179 | 178 167 168 | divcld |  |-  ( ( ph /\ j e. ( M ... ( deg ` G ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) e. CC ) | 
						
							| 180 | 36 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> M e. ZZ ) | 
						
							| 181 | 14 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> ( deg ` G ) e. ZZ ) | 
						
							| 182 |  | eldifi |  |-  ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j e. ( 0 ... ( deg ` G ) ) ) | 
						
							| 183 | 182 | elfzelzd |  |-  ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j e. ZZ ) | 
						
							| 184 | 183 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> j e. ZZ ) | 
						
							| 185 |  | simpr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> -. j < M ) | 
						
							| 186 | 43 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> M e. RR ) | 
						
							| 187 | 184 | zred |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> j e. RR ) | 
						
							| 188 | 186 187 | lenltd |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> ( M <_ j <-> -. j < M ) ) | 
						
							| 189 | 185 188 | mpbird |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> M <_ j ) | 
						
							| 190 |  | elfzle2 |  |-  ( j e. ( 0 ... ( deg ` G ) ) -> j <_ ( deg ` G ) ) | 
						
							| 191 | 182 190 | syl |  |-  ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j <_ ( deg ` G ) ) | 
						
							| 192 | 191 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> j <_ ( deg ` G ) ) | 
						
							| 193 | 180 181 184 189 192 | elfzd |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> j e. ( M ... ( deg ` G ) ) ) | 
						
							| 194 |  | eldifn |  |-  ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> -. j e. ( M ... ( deg ` G ) ) ) | 
						
							| 195 | 194 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. j < M ) -> -. j e. ( M ... ( deg ` G ) ) ) | 
						
							| 196 | 193 195 | condan |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> j < M ) | 
						
							| 197 | 196 | adantr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j < M ) | 
						
							| 198 | 6 | a1i |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> M = inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) ) | 
						
							| 199 | 17 | a1i |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) ) | 
						
							| 200 |  | elfznn0 |  |-  ( j e. ( 0 ... ( deg ` G ) ) -> j e. NN0 ) | 
						
							| 201 | 182 200 | syl |  |-  ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j e. NN0 ) | 
						
							| 202 | 201 | adantr |  |-  ( ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j e. NN0 ) | 
						
							| 203 |  | neqne |  |-  ( -. ( ( coeff ` G ) ` j ) = 0 -> ( ( coeff ` G ) ` j ) =/= 0 ) | 
						
							| 204 | 203 | adantl |  |-  ( ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> ( ( coeff ` G ) ` j ) =/= 0 ) | 
						
							| 205 | 202 204 | jca |  |-  ( ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> ( j e. NN0 /\ ( ( coeff ` G ) ` j ) =/= 0 ) ) | 
						
							| 206 |  | fveq2 |  |-  ( n = j -> ( ( coeff ` G ) ` n ) = ( ( coeff ` G ) ` j ) ) | 
						
							| 207 | 206 | neeq1d |  |-  ( n = j -> ( ( ( coeff ` G ) ` n ) =/= 0 <-> ( ( coeff ` G ) ` j ) =/= 0 ) ) | 
						
							| 208 | 207 | elrab |  |-  ( j e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } <-> ( j e. NN0 /\ ( ( coeff ` G ) ` j ) =/= 0 ) ) | 
						
							| 209 | 205 208 | sylibr |  |-  ( ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) | 
						
							| 210 | 209 | adantll |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) | 
						
							| 211 |  | infssuzle |  |-  ( ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } C_ ( ZZ>= ` 0 ) /\ j e. { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } ) -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) <_ j ) | 
						
							| 212 | 199 210 211 | syl2anc |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> inf ( { n e. NN0 | ( ( coeff ` G ) ` n ) =/= 0 } , RR , < ) <_ j ) | 
						
							| 213 | 198 212 | eqbrtrd |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> M <_ j ) | 
						
							| 214 | 43 | ad2antrr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> M e. RR ) | 
						
							| 215 | 183 | zred |  |-  ( j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) -> j e. RR ) | 
						
							| 216 | 215 | ad2antlr |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> j e. RR ) | 
						
							| 217 | 214 216 | lenltd |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> ( M <_ j <-> -. j < M ) ) | 
						
							| 218 | 213 217 | mpbid |  |-  ( ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) /\ -. ( ( coeff ` G ) ` j ) = 0 ) -> -. j < M ) | 
						
							| 219 | 197 218 | condan |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( coeff ` G ) ` j ) = 0 ) | 
						
							| 220 | 219 | oveq1d |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) = ( 0 x. ( A ^ j ) ) ) | 
						
							| 221 | 128 | adantr |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> A e. CC ) | 
						
							| 222 | 201 | adantl |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> j e. NN0 ) | 
						
							| 223 | 221 222 | expcld |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( A ^ j ) e. CC ) | 
						
							| 224 | 223 | mul02d |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( 0 x. ( A ^ j ) ) = 0 ) | 
						
							| 225 | 220 224 | eqtrd |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) = 0 ) | 
						
							| 226 | 225 | oveq1d |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = ( 0 / ( A ^ M ) ) ) | 
						
							| 227 | 128 2 36 | expne0d |  |-  ( ph -> ( A ^ M ) =/= 0 ) | 
						
							| 228 | 166 227 | div0d |  |-  ( ph -> ( 0 / ( A ^ M ) ) = 0 ) | 
						
							| 229 | 228 | adantr |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( 0 / ( A ^ M ) ) = 0 ) | 
						
							| 230 | 226 229 | eqtrd |  |-  ( ( ph /\ j e. ( ( 0 ... ( deg ` G ) ) \ ( M ... ( deg ` G ) ) ) ) -> ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = 0 ) | 
						
							| 231 |  | fzfid |  |-  ( ph -> ( 0 ... ( deg ` G ) ) e. Fin ) | 
						
							| 232 | 177 179 230 231 | fsumss |  |-  ( ph -> sum_ j e. ( M ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 233 | 135 174 232 | 3eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 234 | 89 56 | syldan |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( coeff ` G ) ` ( k + M ) ) e. ZZ ) | 
						
							| 235 | 7 | fvmpt2 |  |-  ( ( k e. NN0 /\ ( ( coeff ` G ) ` ( k + M ) ) e. ZZ ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 236 | 89 234 235 | syl2anc |  |-  ( ( ph /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 237 | 236 | adantlr |  |-  ( ( ( ph /\ z = A ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( I ` k ) = ( ( coeff ` G ) ` ( k + M ) ) ) | 
						
							| 238 |  | oveq1 |  |-  ( z = A -> ( z ^ k ) = ( A ^ k ) ) | 
						
							| 239 | 238 | ad2antlr |  |-  ( ( ( ph /\ z = A ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( z ^ k ) = ( A ^ k ) ) | 
						
							| 240 | 237 239 | oveq12d |  |-  ( ( ( ph /\ z = A ) /\ k e. ( 0 ... ( ( deg ` G ) - M ) ) ) -> ( ( I ` k ) x. ( z ^ k ) ) = ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) ) | 
						
							| 241 | 240 | sumeq2dv |  |-  ( ( ph /\ z = A ) -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( I ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) ) | 
						
							| 242 |  | fzfid |  |-  ( ph -> ( 0 ... ( ( deg ` G ) - M ) ) e. Fin ) | 
						
							| 243 | 242 131 | fsumcl |  |-  ( ph -> sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) e. CC ) | 
						
							| 244 | 9 241 128 243 | fvmptd |  |-  ( ph -> ( F ` A ) = sum_ k e. ( 0 ... ( ( deg ` G ) - M ) ) ( ( ( coeff ` G ) ` ( k + M ) ) x. ( A ^ k ) ) ) | 
						
							| 245 | 21 20 | coeid2 |  |-  ( ( G e. ( Poly ` ZZ ) /\ A e. CC ) -> ( G ` A ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) ) | 
						
							| 246 | 3 128 245 | syl2anc |  |-  ( ph -> ( G ` A ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) ) | 
						
							| 247 | 246 | oveq1d |  |-  ( ph -> ( ( G ` A ) / ( A ^ M ) ) = ( sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 248 | 86 | adantr |  |-  ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> ( coeff ` G ) : NN0 --> CC ) | 
						
							| 249 | 200 | adantl |  |-  ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> j e. NN0 ) | 
						
							| 250 | 248 249 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> ( ( coeff ` G ) ` j ) e. CC ) | 
						
							| 251 | 128 | adantr |  |-  ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> A e. CC ) | 
						
							| 252 | 251 249 | expcld |  |-  ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> ( A ^ j ) e. CC ) | 
						
							| 253 | 250 252 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... ( deg ` G ) ) ) -> ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) e. CC ) | 
						
							| 254 | 231 166 253 227 | fsumdivc |  |-  ( ph -> ( sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 255 | 247 254 | eqtrd |  |-  ( ph -> ( ( G ` A ) / ( A ^ M ) ) = sum_ j e. ( 0 ... ( deg ` G ) ) ( ( ( ( coeff ` G ) ` j ) x. ( A ^ j ) ) / ( A ^ M ) ) ) | 
						
							| 256 | 233 244 255 | 3eqtr4d |  |-  ( ph -> ( F ` A ) = ( ( G ` A ) / ( A ^ M ) ) ) | 
						
							| 257 | 5 | oveq1d |  |-  ( ph -> ( ( G ` A ) / ( A ^ M ) ) = ( 0 / ( A ^ M ) ) ) | 
						
							| 258 | 256 257 228 | 3eqtrd |  |-  ( ph -> ( F ` A ) = 0 ) | 
						
							| 259 | 125 258 | jca |  |-  ( ph -> ( ( ( coeff ` F ) ` 0 ) =/= 0 /\ ( F ` A ) = 0 ) ) | 
						
							| 260 |  | fveq2 |  |-  ( f = F -> ( coeff ` f ) = ( coeff ` F ) ) | 
						
							| 261 | 260 | fveq1d |  |-  ( f = F -> ( ( coeff ` f ) ` 0 ) = ( ( coeff ` F ) ` 0 ) ) | 
						
							| 262 | 261 | neeq1d |  |-  ( f = F -> ( ( ( coeff ` f ) ` 0 ) =/= 0 <-> ( ( coeff ` F ) ` 0 ) =/= 0 ) ) | 
						
							| 263 |  | fveq1 |  |-  ( f = F -> ( f ` A ) = ( F ` A ) ) | 
						
							| 264 | 263 | eqeq1d |  |-  ( f = F -> ( ( f ` A ) = 0 <-> ( F ` A ) = 0 ) ) | 
						
							| 265 | 262 264 | anbi12d |  |-  ( f = F -> ( ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) <-> ( ( ( coeff ` F ) ` 0 ) =/= 0 /\ ( F ` A ) = 0 ) ) ) | 
						
							| 266 | 265 | rspcev |  |-  ( ( F e. ( Poly ` ZZ ) /\ ( ( ( coeff ` F ) ` 0 ) =/= 0 /\ ( F ` A ) = 0 ) ) -> E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) | 
						
							| 267 | 60 259 266 | syl2anc |  |-  ( ph -> E. f e. ( Poly ` ZZ ) ( ( ( coeff ` f ) ` 0 ) =/= 0 /\ ( f ` A ) = 0 ) ) |