Metamath Proof Explorer


Theorem elaa2lem

Description: Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 . (Contributed by Glauco Siliprandi, 5-Apr-2020) (Revised by AV, 1-Oct-2020)

Ref Expression
Hypotheses elaa2lem.a φA𝔸
elaa2lem.an0 φA0
elaa2lem.g φGPoly
elaa2lem.gn0 φG0𝑝
elaa2lem.ga φGA=0
elaa2lem.m M=supn0|coeffGn0<
elaa2lem.i I=k0coeffGk+M
elaa2lem.f F=zk=0degGMIkzk
Assertion elaa2lem φfPolycoefff00fA=0

Proof

Step Hyp Ref Expression
1 elaa2lem.a φA𝔸
2 elaa2lem.an0 φA0
3 elaa2lem.g φGPoly
4 elaa2lem.gn0 φG0𝑝
5 elaa2lem.ga φGA=0
6 elaa2lem.m M=supn0|coeffGn0<
7 elaa2lem.i I=k0coeffGk+M
8 elaa2lem.f F=zk=0degGMIkzk
9 8 a1i φF=zk=0degGMIkzk
10 zsscn
11 10 a1i φ
12 dgrcl GPolydegG0
13 3 12 syl φdegG0
14 13 nn0zd φdegG
15 ssrab2 n0|coeffGn00
16 nn0uz 0=0
17 15 16 sseqtri n0|coeffGn00
18 17 a1i φn0|coeffGn00
19 4 neneqd φ¬G=0𝑝
20 eqid degG=degG
21 eqid coeffG=coeffG
22 20 21 dgreq0 GPolyG=0𝑝coeffGdegG=0
23 3 22 syl φG=0𝑝coeffGdegG=0
24 19 23 mtbid φ¬coeffGdegG=0
25 24 neqned φcoeffGdegG0
26 13 25 jca φdegG0coeffGdegG0
27 fveq2 n=degGcoeffGn=coeffGdegG
28 27 neeq1d n=degGcoeffGn0coeffGdegG0
29 28 elrab degGn0|coeffGn0degG0coeffGdegG0
30 26 29 sylibr φdegGn0|coeffGn0
31 30 ne0d φn0|coeffGn0
32 infssuzcl n0|coeffGn00n0|coeffGn0supn0|coeffGn0<n0|coeffGn0
33 18 31 32 syl2anc φsupn0|coeffGn0<n0|coeffGn0
34 15 33 sselid φsupn0|coeffGn0<0
35 6 34 eqeltrid φM0
36 35 nn0zd φM
37 14 36 zsubcld φdegGM
38 6 a1i φM=supn0|coeffGn0<
39 infssuzle n0|coeffGn00degGn0|coeffGn0supn0|coeffGn0<degG
40 18 30 39 syl2anc φsupn0|coeffGn0<degG
41 38 40 eqbrtrd φMdegG
42 13 nn0red φdegG
43 35 nn0red φM
44 42 43 subge0d φ0degGMMdegG
45 41 44 mpbird φ0degGM
46 37 45 jca φdegGM0degGM
47 elnn0z degGM0degGM0degGM
48 46 47 sylibr φdegGM0
49 0zd GPoly0
50 21 coef2 GPoly0coeffG:0
51 3 49 50 syl2anc2 φcoeffG:0
52 51 adantr φk0coeffG:0
53 simpr φk0k0
54 35 adantr φk0M0
55 53 54 nn0addcld φk0k+M0
56 52 55 ffvelcdmd φk0coeffGk+M
57 56 7 fmptd φI:0
58 elplyr degGM0I:0zk=0degGMIkzkPoly
59 11 48 57 58 syl3anc φzk=0degGMIkzkPoly
60 9 59 eqeltrd φFPoly
61 simpr φk0kdegGMkdegGM
62 61 iftrued φk0kdegGMifkdegGMcoeffGk+M0=coeffGk+M
63 iffalse ¬kdegGMifkdegGMcoeffGk+M0=0
64 63 adantl φk0¬kdegGMifkdegGMcoeffGk+M0=0
65 simpr φk0¬kdegGM¬kdegGM
66 42 ad2antrr φk0¬kdegGMdegG
67 43 ad2antrr φk0¬kdegGMM
68 66 67 resubcld φk0¬kdegGMdegGM
69 nn0re k0k
70 69 ad2antlr φk0¬kdegGMk
71 68 70 ltnled φk0¬kdegGMdegGM<k¬kdegGM
72 65 71 mpbird φk0¬kdegGMdegGM<k
73 66 67 70 ltsubaddd φk0¬kdegGMdegGM<kdegG<k+M
74 72 73 mpbid φk0¬kdegGMdegG<k+M
75 olc degG<k+MG=0𝑝degG<k+M
76 74 75 syl φk0¬kdegGMG=0𝑝degG<k+M
77 3 ad2antrr φk0¬kdegGMGPoly
78 55 adantr φk0¬kdegGMk+M0
79 20 21 dgrlt GPolyk+M0G=0𝑝degG<k+MdegGk+McoeffGk+M=0
80 77 78 79 syl2anc φk0¬kdegGMG=0𝑝degG<k+MdegGk+McoeffGk+M=0
81 76 80 mpbid φk0¬kdegGMdegGk+McoeffGk+M=0
82 81 simprd φk0¬kdegGMcoeffGk+M=0
83 64 82 eqtr4d φk0¬kdegGMifkdegGMcoeffGk+M0=coeffGk+M
84 62 83 pm2.61dan φk0ifkdegGMcoeffGk+M0=coeffGk+M
85 84 mpteq2dva φk0ifkdegGMcoeffGk+M0=k0coeffGk+M
86 51 11 fssd φcoeffG:0
87 86 adantr φk0degGMcoeffG:0
88 elfznn0 k0degGMk0
89 88 adantl φk0degGMk0
90 35 adantr φk0degGMM0
91 89 90 nn0addcld φk0degGMk+M0
92 87 91 ffvelcdmd φk0degGMcoeffGk+M
93 eqidd φz0degGM=0degGM
94 simpl φk0degGMφ
95 7 a1i φI=k0coeffGk+M
96 95 56 fvmpt2d φk0Ik=coeffGk+M
97 94 89 96 syl2anc φk0degGMIk=coeffGk+M
98 97 adantlr φzk0degGMIk=coeffGk+M
99 98 oveq1d φzk0degGMIkzk=coeffGk+Mzk
100 93 99 sumeq12rdv φzk=0degGMIkzk=k=0degGMcoeffGk+Mzk
101 100 mpteq2dva φzk=0degGMIkzk=zk=0degGMcoeffGk+Mzk
102 9 101 eqtrd φF=zk=0degGMcoeffGk+Mzk
103 60 48 92 102 coeeq2 φcoeffF=k0ifkdegGMcoeffGk+M0
104 85 103 95 3eqtr4d φcoeffF=I
105 104 fveq1d φcoeffF0=I0
106 oveq1 k=0k+M=0+M
107 106 adantl φk=0k+M=0+M
108 10 36 sselid φM
109 108 addlidd φ0+M=M
110 109 adantr φk=00+M=M
111 107 110 eqtrd φk=0k+M=M
112 111 fveq2d φk=0coeffGk+M=coeffGM
113 0nn0 00
114 113 a1i φ00
115 51 35 ffvelcdmd φcoeffGM
116 95 112 114 115 fvmptd φI0=coeffGM
117 eqidd φcoeffGM=coeffGM
118 105 116 117 3eqtrd φcoeffF0=coeffGM
119 38 33 eqeltrd φMn0|coeffGn0
120 fveq2 n=McoeffGn=coeffGM
121 120 neeq1d n=McoeffGn0coeffGM0
122 121 elrab Mn0|coeffGn0M0coeffGM0
123 119 122 sylib φM0coeffGM0
124 123 simprd φcoeffGM0
125 118 124 eqnetrd φcoeffF00
126 3 49 syl φ0
127 aasscn 𝔸
128 127 1 sselid φA
129 94 128 syl φk0degGMA
130 129 89 expcld φk0degGMAk
131 92 130 mulcld φk0degGMcoeffGk+MAk
132 fvoveq1 k=jMcoeffGk+M=coeffGj-M+M
133 oveq2 k=jMAk=AjM
134 132 133 oveq12d k=jMcoeffGk+MAk=coeffGj-M+MAjM
135 36 126 37 131 134 fsumshft φk=0degGMcoeffGk+MAk=j=0+MdegG-M+McoeffGj-M+MAjM
136 10 14 sselid φdegG
137 136 108 npcand φdegG-M+M=degG
138 109 137 oveq12d φ0+MdegG-M+M=MdegG
139 138 sumeq1d φj=0+MdegG-M+McoeffGj-M+MAjM=j=MdegGcoeffGj-M+MAjM
140 elfzelz jMdegGj
141 140 adantl φjMdegGj
142 10 141 sselid φjMdegGj
143 108 adantr φjMdegGM
144 142 143 npcand φjMdegGj-M+M=j
145 144 fveq2d φjMdegGcoeffGj-M+M=coeffGj
146 145 oveq1d φjMdegGcoeffGj-M+MAjM=coeffGjAjM
147 128 adantr φjMdegGA
148 2 adantr φjMdegGA0
149 36 adantr φjMdegGM
150 147 148 149 141 expsubd φjMdegGAjM=AjAM
151 150 oveq2d φjMdegGcoeffGjAjM=coeffGjAjAM
152 86 adantr φjMdegGcoeffG:0
153 0red φjMdegG0
154 43 adantr φjMdegGM
155 141 zred φjMdegGj
156 35 nn0ge0d φ0M
157 156 adantr φjMdegG0M
158 elfzle1 jMdegGMj
159 158 adantl φjMdegGMj
160 153 154 155 157 159 letrd φjMdegG0j
161 141 160 jca φjMdegGj0j
162 elnn0z j0j0j
163 161 162 sylibr φjMdegGj0
164 152 163 ffvelcdmd φjMdegGcoeffGj
165 147 163 expcld φjMdegGAj
166 128 35 expcld φAM
167 166 adantr φjMdegGAM
168 147 148 149 expne0d φjMdegGAM0
169 164 165 167 168 divassd φjMdegGcoeffGjAjAM=coeffGjAjAM
170 169 eqcomd φjMdegGcoeffGjAjAM=coeffGjAjAM
171 151 170 eqtr2d φjMdegGcoeffGjAjAM=coeffGjAjM
172 146 171 eqtr4d φjMdegGcoeffGj-M+MAjM=coeffGjAjAM
173 172 sumeq2dv φj=MdegGcoeffGj-M+MAjM=j=MdegGcoeffGjAjAM
174 139 173 eqtrd φj=0+MdegG-M+McoeffGj-M+MAjM=j=MdegGcoeffGjAjAM
175 35 16 eleqtrdi φM0
176 fzss1 M0MdegG0degG
177 175 176 syl φMdegG0degG
178 164 165 mulcld φjMdegGcoeffGjAj
179 178 167 168 divcld φjMdegGcoeffGjAjAM
180 36 ad2antrr φj0degGMdegG¬j<MM
181 14 ad2antrr φj0degGMdegG¬j<MdegG
182 eldifi j0degGMdegGj0degG
183 182 elfzelzd j0degGMdegGj
184 183 ad2antlr φj0degGMdegG¬j<Mj
185 simpr φj0degGMdegG¬j<M¬j<M
186 43 ad2antrr φj0degGMdegG¬j<MM
187 184 zred φj0degGMdegG¬j<Mj
188 186 187 lenltd φj0degGMdegG¬j<MMj¬j<M
189 185 188 mpbird φj0degGMdegG¬j<MMj
190 elfzle2 j0degGjdegG
191 182 190 syl j0degGMdegGjdegG
192 191 ad2antlr φj0degGMdegG¬j<MjdegG
193 180 181 184 189 192 elfzd φj0degGMdegG¬j<MjMdegG
194 eldifn j0degGMdegG¬jMdegG
195 194 ad2antlr φj0degGMdegG¬j<M¬jMdegG
196 193 195 condan φj0degGMdegGj<M
197 196 adantr φj0degGMdegG¬coeffGj=0j<M
198 6 a1i φj0degGMdegG¬coeffGj=0M=supn0|coeffGn0<
199 17 a1i φj0degGMdegG¬coeffGj=0n0|coeffGn00
200 elfznn0 j0degGj0
201 182 200 syl j0degGMdegGj0
202 201 adantr j0degGMdegG¬coeffGj=0j0
203 neqne ¬coeffGj=0coeffGj0
204 203 adantl j0degGMdegG¬coeffGj=0coeffGj0
205 202 204 jca j0degGMdegG¬coeffGj=0j0coeffGj0
206 fveq2 n=jcoeffGn=coeffGj
207 206 neeq1d n=jcoeffGn0coeffGj0
208 207 elrab jn0|coeffGn0j0coeffGj0
209 205 208 sylibr j0degGMdegG¬coeffGj=0jn0|coeffGn0
210 209 adantll φj0degGMdegG¬coeffGj=0jn0|coeffGn0
211 infssuzle n0|coeffGn00jn0|coeffGn0supn0|coeffGn0<j
212 199 210 211 syl2anc φj0degGMdegG¬coeffGj=0supn0|coeffGn0<j
213 198 212 eqbrtrd φj0degGMdegG¬coeffGj=0Mj
214 43 ad2antrr φj0degGMdegG¬coeffGj=0M
215 183 zred j0degGMdegGj
216 215 ad2antlr φj0degGMdegG¬coeffGj=0j
217 214 216 lenltd φj0degGMdegG¬coeffGj=0Mj¬j<M
218 213 217 mpbid φj0degGMdegG¬coeffGj=0¬j<M
219 197 218 condan φj0degGMdegGcoeffGj=0
220 219 oveq1d φj0degGMdegGcoeffGjAj=0Aj
221 128 adantr φj0degGMdegGA
222 201 adantl φj0degGMdegGj0
223 221 222 expcld φj0degGMdegGAj
224 223 mul02d φj0degGMdegG0Aj=0
225 220 224 eqtrd φj0degGMdegGcoeffGjAj=0
226 225 oveq1d φj0degGMdegGcoeffGjAjAM=0AM
227 128 2 36 expne0d φAM0
228 166 227 div0d φ0AM=0
229 228 adantr φj0degGMdegG0AM=0
230 226 229 eqtrd φj0degGMdegGcoeffGjAjAM=0
231 fzfid φ0degGFin
232 177 179 230 231 fsumss φj=MdegGcoeffGjAjAM=j=0degGcoeffGjAjAM
233 135 174 232 3eqtrd φk=0degGMcoeffGk+MAk=j=0degGcoeffGjAjAM
234 89 56 syldan φk0degGMcoeffGk+M
235 7 fvmpt2 k0coeffGk+MIk=coeffGk+M
236 89 234 235 syl2anc φk0degGMIk=coeffGk+M
237 236 adantlr φz=Ak0degGMIk=coeffGk+M
238 oveq1 z=Azk=Ak
239 238 ad2antlr φz=Ak0degGMzk=Ak
240 237 239 oveq12d φz=Ak0degGMIkzk=coeffGk+MAk
241 240 sumeq2dv φz=Ak=0degGMIkzk=k=0degGMcoeffGk+MAk
242 fzfid φ0degGMFin
243 242 131 fsumcl φk=0degGMcoeffGk+MAk
244 9 241 128 243 fvmptd φFA=k=0degGMcoeffGk+MAk
245 21 20 coeid2 GPolyAGA=j=0degGcoeffGjAj
246 3 128 245 syl2anc φGA=j=0degGcoeffGjAj
247 246 oveq1d φGAAM=j=0degGcoeffGjAjAM
248 86 adantr φj0degGcoeffG:0
249 200 adantl φj0degGj0
250 248 249 ffvelcdmd φj0degGcoeffGj
251 128 adantr φj0degGA
252 251 249 expcld φj0degGAj
253 250 252 mulcld φj0degGcoeffGjAj
254 231 166 253 227 fsumdivc φj=0degGcoeffGjAjAM=j=0degGcoeffGjAjAM
255 247 254 eqtrd φGAAM=j=0degGcoeffGjAjAM
256 233 244 255 3eqtr4d φFA=GAAM
257 5 oveq1d φGAAM=0AM
258 256 257 228 3eqtrd φFA=0
259 125 258 jca φcoeffF00FA=0
260 fveq2 f=Fcoefff=coeffF
261 260 fveq1d f=Fcoefff0=coeffF0
262 261 neeq1d f=Fcoefff00coeffF00
263 fveq1 f=FfA=FA
264 263 eqeq1d f=FfA=0FA=0
265 262 264 anbi12d f=Fcoefff00fA=0coeffF00FA=0
266 265 rspcev FPolycoeffF00FA=0fPolycoefff00fA=0
267 60 259 266 syl2anc φfPolycoefff00fA=0