Metamath Proof Explorer


Theorem elaa2lem

Description: Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 . (Contributed by Glauco Siliprandi, 5-Apr-2020) (Revised by AV, 1-Oct-2020)

Ref Expression
Hypotheses elaa2lem.a φ A 𝔸
elaa2lem.an0 φ A 0
elaa2lem.g φ G Poly
elaa2lem.gn0 φ G 0 𝑝
elaa2lem.ga φ G A = 0
elaa2lem.m M = sup n 0 | coeff G n 0 <
elaa2lem.i I = k 0 coeff G k + M
elaa2lem.f F = z k = 0 deg G M I k z k
Assertion elaa2lem φ f Poly coeff f 0 0 f A = 0

Proof

Step Hyp Ref Expression
1 elaa2lem.a φ A 𝔸
2 elaa2lem.an0 φ A 0
3 elaa2lem.g φ G Poly
4 elaa2lem.gn0 φ G 0 𝑝
5 elaa2lem.ga φ G A = 0
6 elaa2lem.m M = sup n 0 | coeff G n 0 <
7 elaa2lem.i I = k 0 coeff G k + M
8 elaa2lem.f F = z k = 0 deg G M I k z k
9 8 a1i φ F = z k = 0 deg G M I k z k
10 zsscn
11 10 a1i φ
12 dgrcl G Poly deg G 0
13 3 12 syl φ deg G 0
14 13 nn0zd φ deg G
15 ssrab2 n 0 | coeff G n 0 0
16 nn0uz 0 = 0
17 15 16 sseqtri n 0 | coeff G n 0 0
18 17 a1i φ n 0 | coeff G n 0 0
19 4 neneqd φ ¬ G = 0 𝑝
20 eqid deg G = deg G
21 eqid coeff G = coeff G
22 20 21 dgreq0 G Poly G = 0 𝑝 coeff G deg G = 0
23 3 22 syl φ G = 0 𝑝 coeff G deg G = 0
24 19 23 mtbid φ ¬ coeff G deg G = 0
25 24 neqned φ coeff G deg G 0
26 13 25 jca φ deg G 0 coeff G deg G 0
27 fveq2 n = deg G coeff G n = coeff G deg G
28 27 neeq1d n = deg G coeff G n 0 coeff G deg G 0
29 28 elrab deg G n 0 | coeff G n 0 deg G 0 coeff G deg G 0
30 26 29 sylibr φ deg G n 0 | coeff G n 0
31 30 ne0d φ n 0 | coeff G n 0
32 infssuzcl n 0 | coeff G n 0 0 n 0 | coeff G n 0 sup n 0 | coeff G n 0 < n 0 | coeff G n 0
33 18 31 32 syl2anc φ sup n 0 | coeff G n 0 < n 0 | coeff G n 0
34 15 33 sseldi φ sup n 0 | coeff G n 0 < 0
35 6 34 eqeltrid φ M 0
36 35 nn0zd φ M
37 14 36 zsubcld φ deg G M
38 6 a1i φ M = sup n 0 | coeff G n 0 <
39 infssuzle n 0 | coeff G n 0 0 deg G n 0 | coeff G n 0 sup n 0 | coeff G n 0 < deg G
40 18 30 39 syl2anc φ sup n 0 | coeff G n 0 < deg G
41 38 40 eqbrtrd φ M deg G
42 13 nn0red φ deg G
43 35 nn0red φ M
44 42 43 subge0d φ 0 deg G M M deg G
45 41 44 mpbird φ 0 deg G M
46 37 45 jca φ deg G M 0 deg G M
47 elnn0z deg G M 0 deg G M 0 deg G M
48 46 47 sylibr φ deg G M 0
49 0zd G Poly 0
50 21 coef2 G Poly 0 coeff G : 0
51 3 49 50 syl2anc2 φ coeff G : 0
52 51 adantr φ k 0 coeff G : 0
53 simpr φ k 0 k 0
54 35 adantr φ k 0 M 0
55 53 54 nn0addcld φ k 0 k + M 0
56 52 55 ffvelrnd φ k 0 coeff G k + M
57 56 7 fmptd φ I : 0
58 elplyr deg G M 0 I : 0 z k = 0 deg G M I k z k Poly
59 11 48 57 58 syl3anc φ z k = 0 deg G M I k z k Poly
60 9 59 eqeltrd φ F Poly
61 simpr φ k 0 k deg G M k deg G M
62 61 iftrued φ k 0 k deg G M if k deg G M coeff G k + M 0 = coeff G k + M
63 iffalse ¬ k deg G M if k deg G M coeff G k + M 0 = 0
64 63 adantl φ k 0 ¬ k deg G M if k deg G M coeff G k + M 0 = 0
65 simpr φ k 0 ¬ k deg G M ¬ k deg G M
66 42 ad2antrr φ k 0 ¬ k deg G M deg G
67 43 ad2antrr φ k 0 ¬ k deg G M M
68 66 67 resubcld φ k 0 ¬ k deg G M deg G M
69 nn0re k 0 k
70 69 ad2antlr φ k 0 ¬ k deg G M k
71 68 70 ltnled φ k 0 ¬ k deg G M deg G M < k ¬ k deg G M
72 65 71 mpbird φ k 0 ¬ k deg G M deg G M < k
73 66 67 70 ltsubaddd φ k 0 ¬ k deg G M deg G M < k deg G < k + M
74 72 73 mpbid φ k 0 ¬ k deg G M deg G < k + M
75 olc deg G < k + M G = 0 𝑝 deg G < k + M
76 74 75 syl φ k 0 ¬ k deg G M G = 0 𝑝 deg G < k + M
77 3 ad2antrr φ k 0 ¬ k deg G M G Poly
78 55 adantr φ k 0 ¬ k deg G M k + M 0
79 20 21 dgrlt G Poly k + M 0 G = 0 𝑝 deg G < k + M deg G k + M coeff G k + M = 0
80 77 78 79 syl2anc φ k 0 ¬ k deg G M G = 0 𝑝 deg G < k + M deg G k + M coeff G k + M = 0
81 76 80 mpbid φ k 0 ¬ k deg G M deg G k + M coeff G k + M = 0
82 81 simprd φ k 0 ¬ k deg G M coeff G k + M = 0
83 64 82 eqtr4d φ k 0 ¬ k deg G M if k deg G M coeff G k + M 0 = coeff G k + M
84 62 83 pm2.61dan φ k 0 if k deg G M coeff G k + M 0 = coeff G k + M
85 84 mpteq2dva φ k 0 if k deg G M coeff G k + M 0 = k 0 coeff G k + M
86 51 11 fssd φ coeff G : 0
87 86 adantr φ k 0 deg G M coeff G : 0
88 elfznn0 k 0 deg G M k 0
89 88 adantl φ k 0 deg G M k 0
90 35 adantr φ k 0 deg G M M 0
91 89 90 nn0addcld φ k 0 deg G M k + M 0
92 87 91 ffvelrnd φ k 0 deg G M coeff G k + M
93 eqidd φ z 0 deg G M = 0 deg G M
94 simpl φ k 0 deg G M φ
95 7 a1i φ I = k 0 coeff G k + M
96 95 56 fvmpt2d φ k 0 I k = coeff G k + M
97 94 89 96 syl2anc φ k 0 deg G M I k = coeff G k + M
98 97 adantlr φ z k 0 deg G M I k = coeff G k + M
99 98 oveq1d φ z k 0 deg G M I k z k = coeff G k + M z k
100 93 99 sumeq12rdv φ z k = 0 deg G M I k z k = k = 0 deg G M coeff G k + M z k
101 100 mpteq2dva φ z k = 0 deg G M I k z k = z k = 0 deg G M coeff G k + M z k
102 9 101 eqtrd φ F = z k = 0 deg G M coeff G k + M z k
103 60 48 92 102 coeeq2 φ coeff F = k 0 if k deg G M coeff G k + M 0
104 85 103 95 3eqtr4d φ coeff F = I
105 104 fveq1d φ coeff F 0 = I 0
106 oveq1 k = 0 k + M = 0 + M
107 106 adantl φ k = 0 k + M = 0 + M
108 10 36 sseldi φ M
109 108 addid2d φ 0 + M = M
110 109 adantr φ k = 0 0 + M = M
111 107 110 eqtrd φ k = 0 k + M = M
112 111 fveq2d φ k = 0 coeff G k + M = coeff G M
113 0nn0 0 0
114 113 a1i φ 0 0
115 51 35 ffvelrnd φ coeff G M
116 95 112 114 115 fvmptd φ I 0 = coeff G M
117 eqidd φ coeff G M = coeff G M
118 105 116 117 3eqtrd φ coeff F 0 = coeff G M
119 38 33 eqeltrd φ M n 0 | coeff G n 0
120 fveq2 n = M coeff G n = coeff G M
121 120 neeq1d n = M coeff G n 0 coeff G M 0
122 121 elrab M n 0 | coeff G n 0 M 0 coeff G M 0
123 119 122 sylib φ M 0 coeff G M 0
124 123 simprd φ coeff G M 0
125 118 124 eqnetrd φ coeff F 0 0
126 3 49 syl φ 0
127 aasscn 𝔸
128 127 1 sseldi φ A
129 94 128 syl φ k 0 deg G M A
130 129 89 expcld φ k 0 deg G M A k
131 92 130 mulcld φ k 0 deg G M coeff G k + M A k
132 fvoveq1 k = j M coeff G k + M = coeff G j - M + M
133 oveq2 k = j M A k = A j M
134 132 133 oveq12d k = j M coeff G k + M A k = coeff G j - M + M A j M
135 36 126 37 131 134 fsumshft φ k = 0 deg G M coeff G k + M A k = j = 0 + M deg G - M + M coeff G j - M + M A j M
136 10 14 sseldi φ deg G
137 136 108 npcand φ deg G - M + M = deg G
138 109 137 oveq12d φ 0 + M deg G - M + M = M deg G
139 138 sumeq1d φ j = 0 + M deg G - M + M coeff G j - M + M A j M = j = M deg G coeff G j - M + M A j M
140 elfzelz j M deg G j
141 140 adantl φ j M deg G j
142 10 141 sseldi φ j M deg G j
143 108 adantr φ j M deg G M
144 142 143 npcand φ j M deg G j - M + M = j
145 144 fveq2d φ j M deg G coeff G j - M + M = coeff G j
146 145 oveq1d φ j M deg G coeff G j - M + M A j M = coeff G j A j M
147 128 adantr φ j M deg G A
148 2 adantr φ j M deg G A 0
149 36 adantr φ j M deg G M
150 147 148 149 141 expsubd φ j M deg G A j M = A j A M
151 150 oveq2d φ j M deg G coeff G j A j M = coeff G j A j A M
152 86 adantr φ j M deg G coeff G : 0
153 0red φ j M deg G 0
154 43 adantr φ j M deg G M
155 141 zred φ j M deg G j
156 35 nn0ge0d φ 0 M
157 156 adantr φ j M deg G 0 M
158 elfzle1 j M deg G M j
159 158 adantl φ j M deg G M j
160 153 154 155 157 159 letrd φ j M deg G 0 j
161 141 160 jca φ j M deg G j 0 j
162 elnn0z j 0 j 0 j
163 161 162 sylibr φ j M deg G j 0
164 152 163 ffvelrnd φ j M deg G coeff G j
165 147 163 expcld φ j M deg G A j
166 128 35 expcld φ A M
167 166 adantr φ j M deg G A M
168 147 148 149 expne0d φ j M deg G A M 0
169 164 165 167 168 divassd φ j M deg G coeff G j A j A M = coeff G j A j A M
170 169 eqcomd φ j M deg G coeff G j A j A M = coeff G j A j A M
171 151 170 eqtr2d φ j M deg G coeff G j A j A M = coeff G j A j M
172 146 171 eqtr4d φ j M deg G coeff G j - M + M A j M = coeff G j A j A M
173 172 sumeq2dv φ j = M deg G coeff G j - M + M A j M = j = M deg G coeff G j A j A M
174 139 173 eqtrd φ j = 0 + M deg G - M + M coeff G j - M + M A j M = j = M deg G coeff G j A j A M
175 35 16 eleqtrdi φ M 0
176 fzss1 M 0 M deg G 0 deg G
177 175 176 syl φ M deg G 0 deg G
178 164 165 mulcld φ j M deg G coeff G j A j
179 178 167 168 divcld φ j M deg G coeff G j A j A M
180 36 ad2antrr φ j 0 deg G M deg G ¬ j < M M
181 14 ad2antrr φ j 0 deg G M deg G ¬ j < M deg G
182 eldifi j 0 deg G M deg G j 0 deg G
183 182 elfzelzd j 0 deg G M deg G j
184 183 ad2antlr φ j 0 deg G M deg G ¬ j < M j
185 simpr φ j 0 deg G M deg G ¬ j < M ¬ j < M
186 43 ad2antrr φ j 0 deg G M deg G ¬ j < M M
187 184 zred φ j 0 deg G M deg G ¬ j < M j
188 186 187 lenltd φ j 0 deg G M deg G ¬ j < M M j ¬ j < M
189 185 188 mpbird φ j 0 deg G M deg G ¬ j < M M j
190 elfzle2 j 0 deg G j deg G
191 182 190 syl j 0 deg G M deg G j deg G
192 191 ad2antlr φ j 0 deg G M deg G ¬ j < M j deg G
193 180 181 184 189 192 elfzd φ j 0 deg G M deg G ¬ j < M j M deg G
194 eldifn j 0 deg G M deg G ¬ j M deg G
195 194 ad2antlr φ j 0 deg G M deg G ¬ j < M ¬ j M deg G
196 193 195 condan φ j 0 deg G M deg G j < M
197 196 adantr φ j 0 deg G M deg G ¬ coeff G j = 0 j < M
198 6 a1i φ j 0 deg G M deg G ¬ coeff G j = 0 M = sup n 0 | coeff G n 0 <
199 17 a1i φ j 0 deg G M deg G ¬ coeff G j = 0 n 0 | coeff G n 0 0
200 elfznn0 j 0 deg G j 0
201 182 200 syl j 0 deg G M deg G j 0
202 201 adantr j 0 deg G M deg G ¬ coeff G j = 0 j 0
203 neqne ¬ coeff G j = 0 coeff G j 0
204 203 adantl j 0 deg G M deg G ¬ coeff G j = 0 coeff G j 0
205 202 204 jca j 0 deg G M deg G ¬ coeff G j = 0 j 0 coeff G j 0
206 fveq2 n = j coeff G n = coeff G j
207 206 neeq1d n = j coeff G n 0 coeff G j 0
208 207 elrab j n 0 | coeff G n 0 j 0 coeff G j 0
209 205 208 sylibr j 0 deg G M deg G ¬ coeff G j = 0 j n 0 | coeff G n 0
210 209 adantll φ j 0 deg G M deg G ¬ coeff G j = 0 j n 0 | coeff G n 0
211 infssuzle n 0 | coeff G n 0 0 j n 0 | coeff G n 0 sup n 0 | coeff G n 0 < j
212 199 210 211 syl2anc φ j 0 deg G M deg G ¬ coeff G j = 0 sup n 0 | coeff G n 0 < j
213 198 212 eqbrtrd φ j 0 deg G M deg G ¬ coeff G j = 0 M j
214 43 ad2antrr φ j 0 deg G M deg G ¬ coeff G j = 0 M
215 183 zred j 0 deg G M deg G j
216 215 ad2antlr φ j 0 deg G M deg G ¬ coeff G j = 0 j
217 214 216 lenltd φ j 0 deg G M deg G ¬ coeff G j = 0 M j ¬ j < M
218 213 217 mpbid φ j 0 deg G M deg G ¬ coeff G j = 0 ¬ j < M
219 197 218 condan φ j 0 deg G M deg G coeff G j = 0
220 219 oveq1d φ j 0 deg G M deg G coeff G j A j = 0 A j
221 128 adantr φ j 0 deg G M deg G A
222 201 adantl φ j 0 deg G M deg G j 0
223 221 222 expcld φ j 0 deg G M deg G A j
224 223 mul02d φ j 0 deg G M deg G 0 A j = 0
225 220 224 eqtrd φ j 0 deg G M deg G coeff G j A j = 0
226 225 oveq1d φ j 0 deg G M deg G coeff G j A j A M = 0 A M
227 128 2 36 expne0d φ A M 0
228 166 227 div0d φ 0 A M = 0
229 228 adantr φ j 0 deg G M deg G 0 A M = 0
230 226 229 eqtrd φ j 0 deg G M deg G coeff G j A j A M = 0
231 fzfid φ 0 deg G Fin
232 177 179 230 231 fsumss φ j = M deg G coeff G j A j A M = j = 0 deg G coeff G j A j A M
233 135 174 232 3eqtrd φ k = 0 deg G M coeff G k + M A k = j = 0 deg G coeff G j A j A M
234 89 56 syldan φ k 0 deg G M coeff G k + M
235 7 fvmpt2 k 0 coeff G k + M I k = coeff G k + M
236 89 234 235 syl2anc φ k 0 deg G M I k = coeff G k + M
237 236 adantlr φ z = A k 0 deg G M I k = coeff G k + M
238 oveq1 z = A z k = A k
239 238 ad2antlr φ z = A k 0 deg G M z k = A k
240 237 239 oveq12d φ z = A k 0 deg G M I k z k = coeff G k + M A k
241 240 sumeq2dv φ z = A k = 0 deg G M I k z k = k = 0 deg G M coeff G k + M A k
242 fzfid φ 0 deg G M Fin
243 242 131 fsumcl φ k = 0 deg G M coeff G k + M A k
244 9 241 128 243 fvmptd φ F A = k = 0 deg G M coeff G k + M A k
245 21 20 coeid2 G Poly A G A = j = 0 deg G coeff G j A j
246 3 128 245 syl2anc φ G A = j = 0 deg G coeff G j A j
247 246 oveq1d φ G A A M = j = 0 deg G coeff G j A j A M
248 86 adantr φ j 0 deg G coeff G : 0
249 200 adantl φ j 0 deg G j 0
250 248 249 ffvelrnd φ j 0 deg G coeff G j
251 128 adantr φ j 0 deg G A
252 251 249 expcld φ j 0 deg G A j
253 250 252 mulcld φ j 0 deg G coeff G j A j
254 231 166 253 227 fsumdivc φ j = 0 deg G coeff G j A j A M = j = 0 deg G coeff G j A j A M
255 247 254 eqtrd φ G A A M = j = 0 deg G coeff G j A j A M
256 233 244 255 3eqtr4d φ F A = G A A M
257 5 oveq1d φ G A A M = 0 A M
258 256 257 228 3eqtrd φ F A = 0
259 125 258 jca φ coeff F 0 0 F A = 0
260 fveq2 f = F coeff f = coeff F
261 260 fveq1d f = F coeff f 0 = coeff F 0
262 261 neeq1d f = F coeff f 0 0 coeff F 0 0
263 fveq1 f = F f A = F A
264 263 eqeq1d f = F f A = 0 F A = 0
265 262 264 anbi12d f = F coeff f 0 0 f A = 0 coeff F 0 0 F A = 0
266 265 rspcev F Poly coeff F 0 0 F A = 0 f Poly coeff f 0 0 f A = 0
267 60 259 266 syl2anc φ f Poly coeff f 0 0 f A = 0