| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elaa2lem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝔸 ) |
| 2 |
|
elaa2lem.an0 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 3 |
|
elaa2lem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ ℤ ) ) |
| 4 |
|
elaa2lem.gn0 |
⊢ ( 𝜑 → 𝐺 ≠ 0𝑝 ) |
| 5 |
|
elaa2lem.ga |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = 0 ) |
| 6 |
|
elaa2lem.m |
⊢ 𝑀 = inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) |
| 7 |
|
elaa2lem.i |
⊢ 𝐼 = ( 𝑘 ∈ ℕ0 ↦ ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 8 |
|
elaa2lem.f |
⊢ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 10 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ℤ ⊆ ℂ ) |
| 12 |
|
dgrcl |
⊢ ( 𝐺 ∈ ( Poly ‘ ℤ ) → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
| 14 |
13
|
nn0zd |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℤ ) |
| 15 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ⊆ ℕ0 |
| 16 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 17 |
15 16
|
sseqtri |
⊢ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ⊆ ( ℤ≥ ‘ 0 ) |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ⊆ ( ℤ≥ ‘ 0 ) ) |
| 19 |
4
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐺 = 0𝑝 ) |
| 20 |
|
eqid |
⊢ ( deg ‘ 𝐺 ) = ( deg ‘ 𝐺 ) |
| 21 |
|
eqid |
⊢ ( coeff ‘ 𝐺 ) = ( coeff ‘ 𝐺 ) |
| 22 |
20 21
|
dgreq0 |
⊢ ( 𝐺 ∈ ( Poly ‘ ℤ ) → ( 𝐺 = 0𝑝 ↔ ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) ) |
| 23 |
3 22
|
syl |
⊢ ( 𝜑 → ( 𝐺 = 0𝑝 ↔ ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) ) |
| 24 |
19 23
|
mtbid |
⊢ ( 𝜑 → ¬ ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) = 0 ) |
| 25 |
24
|
neqned |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) ≠ 0 ) |
| 26 |
13 25
|
jca |
⊢ ( 𝜑 → ( ( deg ‘ 𝐺 ) ∈ ℕ0 ∧ ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) ≠ 0 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑛 = ( deg ‘ 𝐺 ) → ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) = ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) ) |
| 28 |
27
|
neeq1d |
⊢ ( 𝑛 = ( deg ‘ 𝐺 ) → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 ↔ ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) ≠ 0 ) ) |
| 29 |
28
|
elrab |
⊢ ( ( deg ‘ 𝐺 ) ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ↔ ( ( deg ‘ 𝐺 ) ∈ ℕ0 ∧ ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) ≠ 0 ) ) |
| 30 |
26 29
|
sylibr |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ) |
| 31 |
30
|
ne0d |
⊢ ( 𝜑 → { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ≠ ∅ ) |
| 32 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ⊆ ( ℤ≥ ‘ 0 ) ∧ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ) |
| 33 |
18 31 32
|
syl2anc |
⊢ ( 𝜑 → inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ) |
| 34 |
15 33
|
sselid |
⊢ ( 𝜑 → inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ∈ ℕ0 ) |
| 35 |
6 34
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 36 |
35
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 37 |
14 36
|
zsubcld |
⊢ ( 𝜑 → ( ( deg ‘ 𝐺 ) − 𝑀 ) ∈ ℤ ) |
| 38 |
6
|
a1i |
⊢ ( 𝜑 → 𝑀 = inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ) |
| 39 |
|
infssuzle |
⊢ ( ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ⊆ ( ℤ≥ ‘ 0 ) ∧ ( deg ‘ 𝐺 ) ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ) → inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ≤ ( deg ‘ 𝐺 ) ) |
| 40 |
18 30 39
|
syl2anc |
⊢ ( 𝜑 → inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ≤ ( deg ‘ 𝐺 ) ) |
| 41 |
38 40
|
eqbrtrd |
⊢ ( 𝜑 → 𝑀 ≤ ( deg ‘ 𝐺 ) ) |
| 42 |
13
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℝ ) |
| 43 |
35
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 44 |
42 43
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ↔ 𝑀 ≤ ( deg ‘ 𝐺 ) ) ) |
| 45 |
41 44
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) |
| 46 |
37 45
|
jca |
⊢ ( 𝜑 → ( ( ( deg ‘ 𝐺 ) − 𝑀 ) ∈ ℤ ∧ 0 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) |
| 47 |
|
elnn0z |
⊢ ( ( ( deg ‘ 𝐺 ) − 𝑀 ) ∈ ℕ0 ↔ ( ( ( deg ‘ 𝐺 ) − 𝑀 ) ∈ ℤ ∧ 0 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) |
| 48 |
46 47
|
sylibr |
⊢ ( 𝜑 → ( ( deg ‘ 𝐺 ) − 𝑀 ) ∈ ℕ0 ) |
| 49 |
|
0zd |
⊢ ( 𝐺 ∈ ( Poly ‘ ℤ ) → 0 ∈ ℤ ) |
| 50 |
21
|
coef2 |
⊢ ( ( 𝐺 ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℤ ) → ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℤ ) |
| 51 |
3 49 50
|
syl2anc2 |
⊢ ( 𝜑 → ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℤ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℤ ) |
| 53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 54 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
| 55 |
53 54
|
nn0addcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 𝑀 ) ∈ ℕ0 ) |
| 56 |
52 55
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ∈ ℤ ) |
| 57 |
56 7
|
fmptd |
⊢ ( 𝜑 → 𝐼 : ℕ0 ⟶ ℤ ) |
| 58 |
|
elplyr |
⊢ ( ( ℤ ⊆ ℂ ∧ ( ( deg ‘ 𝐺 ) − 𝑀 ) ∈ ℕ0 ∧ 𝐼 : ℕ0 ⟶ ℤ ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ ℤ ) ) |
| 59 |
11 48 57 58
|
syl3anc |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ ℤ ) ) |
| 60 |
9 59
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℤ ) ) |
| 61 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) |
| 62 |
61
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → if ( 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) , ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) , 0 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 63 |
|
iffalse |
⊢ ( ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) → if ( 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) , ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) , 0 ) = 0 ) |
| 64 |
63
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → if ( 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) , ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) , 0 ) = 0 ) |
| 65 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) |
| 66 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( deg ‘ 𝐺 ) ∈ ℝ ) |
| 67 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → 𝑀 ∈ ℝ ) |
| 68 |
66 67
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( ( deg ‘ 𝐺 ) − 𝑀 ) ∈ ℝ ) |
| 69 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 70 |
69
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → 𝑘 ∈ ℝ ) |
| 71 |
68 70
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( ( ( deg ‘ 𝐺 ) − 𝑀 ) < 𝑘 ↔ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) |
| 72 |
65 71
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( ( deg ‘ 𝐺 ) − 𝑀 ) < 𝑘 ) |
| 73 |
66 67 70
|
ltsubaddd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( ( ( deg ‘ 𝐺 ) − 𝑀 ) < 𝑘 ↔ ( deg ‘ 𝐺 ) < ( 𝑘 + 𝑀 ) ) ) |
| 74 |
72 73
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( deg ‘ 𝐺 ) < ( 𝑘 + 𝑀 ) ) |
| 75 |
|
olc |
⊢ ( ( deg ‘ 𝐺 ) < ( 𝑘 + 𝑀 ) → ( 𝐺 = 0𝑝 ∨ ( deg ‘ 𝐺 ) < ( 𝑘 + 𝑀 ) ) ) |
| 76 |
74 75
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( 𝐺 = 0𝑝 ∨ ( deg ‘ 𝐺 ) < ( 𝑘 + 𝑀 ) ) ) |
| 77 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → 𝐺 ∈ ( Poly ‘ ℤ ) ) |
| 78 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( 𝑘 + 𝑀 ) ∈ ℕ0 ) |
| 79 |
20 21
|
dgrlt |
⊢ ( ( 𝐺 ∈ ( Poly ‘ ℤ ) ∧ ( 𝑘 + 𝑀 ) ∈ ℕ0 ) → ( ( 𝐺 = 0𝑝 ∨ ( deg ‘ 𝐺 ) < ( 𝑘 + 𝑀 ) ) ↔ ( ( deg ‘ 𝐺 ) ≤ ( 𝑘 + 𝑀 ) ∧ ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) = 0 ) ) ) |
| 80 |
77 78 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( ( 𝐺 = 0𝑝 ∨ ( deg ‘ 𝐺 ) < ( 𝑘 + 𝑀 ) ) ↔ ( ( deg ‘ 𝐺 ) ≤ ( 𝑘 + 𝑀 ) ∧ ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) = 0 ) ) ) |
| 81 |
76 80
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( ( deg ‘ 𝐺 ) ≤ ( 𝑘 + 𝑀 ) ∧ ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) = 0 ) ) |
| 82 |
81
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) = 0 ) |
| 83 |
64 82
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → if ( 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) , ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) , 0 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 84 |
62 83
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) , ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) , 0 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 85 |
84
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) , ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) , 0 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) ) |
| 86 |
51 11
|
fssd |
⊢ ( 𝜑 → ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℂ ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℂ ) |
| 88 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 90 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → 𝑀 ∈ ℕ0 ) |
| 91 |
89 90
|
nn0addcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( 𝑘 + 𝑀 ) ∈ ℕ0 ) |
| 92 |
87 91
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ∈ ℂ ) |
| 93 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) = ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) |
| 94 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → 𝜑 ) |
| 95 |
7
|
a1i |
⊢ ( 𝜑 → 𝐼 = ( 𝑘 ∈ ℕ0 ↦ ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) ) |
| 96 |
95 56
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼 ‘ 𝑘 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 97 |
94 89 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( 𝐼 ‘ 𝑘 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 98 |
97
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( 𝐼 ‘ 𝑘 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 99 |
98
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 100 |
93 99
|
sumeq12rdv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 101 |
100
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 102 |
9 101
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 103 |
60 48 92 102
|
coeeq2 |
⊢ ( 𝜑 → ( coeff ‘ 𝐹 ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ≤ ( ( deg ‘ 𝐺 ) − 𝑀 ) , ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) , 0 ) ) ) |
| 104 |
85 103 95
|
3eqtr4d |
⊢ ( 𝜑 → ( coeff ‘ 𝐹 ) = 𝐼 ) |
| 105 |
104
|
fveq1d |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐹 ) ‘ 0 ) = ( 𝐼 ‘ 0 ) ) |
| 106 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 + 𝑀 ) = ( 0 + 𝑀 ) ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑘 + 𝑀 ) = ( 0 + 𝑀 ) ) |
| 108 |
10 36
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 109 |
108
|
addlidd |
⊢ ( 𝜑 → ( 0 + 𝑀 ) = 𝑀 ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 0 + 𝑀 ) = 𝑀 ) |
| 111 |
107 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑘 + 𝑀 ) = 𝑀 ) |
| 112 |
111
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) = ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) |
| 113 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 114 |
113
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 115 |
51 35
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ∈ ℤ ) |
| 116 |
95 112 114 115
|
fvmptd |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) |
| 117 |
|
eqidd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) = ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) |
| 118 |
105 116 117
|
3eqtrd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐹 ) ‘ 0 ) = ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) |
| 119 |
38 33
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ) |
| 120 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) = ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) |
| 121 |
120
|
neeq1d |
⊢ ( 𝑛 = 𝑀 → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 ↔ ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ≠ 0 ) ) |
| 122 |
121
|
elrab |
⊢ ( 𝑀 ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ↔ ( 𝑀 ∈ ℕ0 ∧ ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ≠ 0 ) ) |
| 123 |
119 122
|
sylib |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ0 ∧ ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ≠ 0 ) ) |
| 124 |
123
|
simprd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ≠ 0 ) |
| 125 |
118 124
|
eqnetrd |
⊢ ( 𝜑 → ( ( coeff ‘ 𝐹 ) ‘ 0 ) ≠ 0 ) |
| 126 |
3 49
|
syl |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 127 |
|
aasscn |
⊢ 𝔸 ⊆ ℂ |
| 128 |
127 1
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 129 |
94 128
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → 𝐴 ∈ ℂ ) |
| 130 |
129 89
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 131 |
92 130
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 132 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝑗 − 𝑀 ) → ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) = ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) ) |
| 133 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 − 𝑀 ) → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) |
| 134 |
132 133
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 − 𝑀 ) → ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) ) |
| 135 |
36 126 37 131 134
|
fsumshft |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝐴 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( ( 0 + 𝑀 ) ... ( ( ( deg ‘ 𝐺 ) − 𝑀 ) + 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) ) |
| 136 |
10 14
|
sselid |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℂ ) |
| 137 |
136 108
|
npcand |
⊢ ( 𝜑 → ( ( ( deg ‘ 𝐺 ) − 𝑀 ) + 𝑀 ) = ( deg ‘ 𝐺 ) ) |
| 138 |
109 137
|
oveq12d |
⊢ ( 𝜑 → ( ( 0 + 𝑀 ) ... ( ( ( deg ‘ 𝐺 ) − 𝑀 ) + 𝑀 ) ) = ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) |
| 139 |
138
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 0 + 𝑀 ) ... ( ( ( deg ‘ 𝐺 ) − 𝑀 ) + 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) = Σ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) ) |
| 140 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) → 𝑗 ∈ ℤ ) |
| 141 |
140
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ℤ ) |
| 142 |
10 141
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ℂ ) |
| 143 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑀 ∈ ℂ ) |
| 144 |
142 143
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( 𝑗 − 𝑀 ) + 𝑀 ) = 𝑗 ) |
| 145 |
144
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) = ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 146 |
145
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) = ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) ) |
| 147 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝐴 ∈ ℂ ) |
| 148 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝐴 ≠ 0 ) |
| 149 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑀 ∈ ℤ ) |
| 150 |
147 148 149 141
|
expsubd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) = ( ( 𝐴 ↑ 𝑗 ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 151 |
150
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) = ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( ( 𝐴 ↑ 𝑗 ) / ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 152 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℂ ) |
| 153 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 0 ∈ ℝ ) |
| 154 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑀 ∈ ℝ ) |
| 155 |
141
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ℝ ) |
| 156 |
35
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 157 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 0 ≤ 𝑀 ) |
| 158 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) → 𝑀 ≤ 𝑗 ) |
| 159 |
158
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑀 ≤ 𝑗 ) |
| 160 |
153 154 155 157 159
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 0 ≤ 𝑗 ) |
| 161 |
141 160
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
| 162 |
|
elnn0z |
⊢ ( 𝑗 ∈ ℕ0 ↔ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
| 163 |
161 162
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 164 |
152 163
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
| 165 |
147 163
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 166 |
128 35
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 168 |
147 148 149
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( 𝐴 ↑ 𝑀 ) ≠ 0 ) |
| 169 |
164 165 167 168
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) = ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( ( 𝐴 ↑ 𝑗 ) / ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 170 |
169
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( ( 𝐴 ↑ 𝑗 ) / ( 𝐴 ↑ 𝑀 ) ) ) = ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 171 |
151 170
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) = ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) ) |
| 172 |
146 171
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) = ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 173 |
172
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) = Σ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 174 |
139 173
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 0 + 𝑀 ) ... ( ( ( deg ‘ 𝐺 ) − 𝑀 ) + 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗 − 𝑀 ) + 𝑀 ) ) · ( 𝐴 ↑ ( 𝑗 − 𝑀 ) ) ) = Σ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 175 |
35 16
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 176 |
|
fzss1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑀 ... ( deg ‘ 𝐺 ) ) ⊆ ( 0 ... ( deg ‘ 𝐺 ) ) ) |
| 177 |
175 176
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... ( deg ‘ 𝐺 ) ) ⊆ ( 0 ... ( deg ‘ 𝐺 ) ) ) |
| 178 |
164 165
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) ∈ ℂ ) |
| 179 |
178 167 168
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ∈ ℂ ) |
| 180 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → 𝑀 ∈ ℤ ) |
| 181 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → ( deg ‘ 𝐺 ) ∈ ℤ ) |
| 182 |
|
eldifi |
⊢ ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ) |
| 183 |
182
|
elfzelzd |
⊢ ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ℤ ) |
| 184 |
183
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → 𝑗 ∈ ℤ ) |
| 185 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → ¬ 𝑗 < 𝑀 ) |
| 186 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → 𝑀 ∈ ℝ ) |
| 187 |
184
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → 𝑗 ∈ ℝ ) |
| 188 |
186 187
|
lenltd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → ( 𝑀 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑀 ) ) |
| 189 |
185 188
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → 𝑀 ≤ 𝑗 ) |
| 190 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) → 𝑗 ≤ ( deg ‘ 𝐺 ) ) |
| 191 |
182 190
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ≤ ( deg ‘ 𝐺 ) ) |
| 192 |
191
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → 𝑗 ≤ ( deg ‘ 𝐺 ) ) |
| 193 |
180 181 184 189 192
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) |
| 194 |
|
eldifn |
⊢ ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → ¬ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) |
| 195 |
194
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ 𝑗 < 𝑀 ) → ¬ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) |
| 196 |
193 195
|
condan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → 𝑗 < 𝑀 ) |
| 197 |
196
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → 𝑗 < 𝑀 ) |
| 198 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → 𝑀 = inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ) |
| 199 |
17
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ⊆ ( ℤ≥ ‘ 0 ) ) |
| 200 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) → 𝑗 ∈ ℕ0 ) |
| 201 |
182 200
|
syl |
⊢ ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 202 |
201
|
adantr |
⊢ ( ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → 𝑗 ∈ ℕ0 ) |
| 203 |
|
neqne |
⊢ ( ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 → ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ≠ 0 ) |
| 204 |
203
|
adantl |
⊢ ( ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ≠ 0 ) |
| 205 |
202 204
|
jca |
⊢ ( ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → ( 𝑗 ∈ ℕ0 ∧ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ≠ 0 ) ) |
| 206 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) = ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 207 |
206
|
neeq1d |
⊢ ( 𝑛 = 𝑗 → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 ↔ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ≠ 0 ) ) |
| 208 |
207
|
elrab |
⊢ ( 𝑗 ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ↔ ( 𝑗 ∈ ℕ0 ∧ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ≠ 0 ) ) |
| 209 |
205 208
|
sylibr |
⊢ ( ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → 𝑗 ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ) |
| 210 |
209
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → 𝑗 ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ) |
| 211 |
|
infssuzle |
⊢ ( ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ⊆ ( ℤ≥ ‘ 0 ) ∧ 𝑗 ∈ { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } ) → inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ≤ 𝑗 ) |
| 212 |
199 210 211
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → inf ( { 𝑛 ∈ ℕ0 ∣ ( ( coeff ‘ 𝐺 ) ‘ 𝑛 ) ≠ 0 } , ℝ , < ) ≤ 𝑗 ) |
| 213 |
198 212
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → 𝑀 ≤ 𝑗 ) |
| 214 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → 𝑀 ∈ ℝ ) |
| 215 |
183
|
zred |
⊢ ( 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ℝ ) |
| 216 |
215
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → 𝑗 ∈ ℝ ) |
| 217 |
214 216
|
lenltd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → ( 𝑀 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑀 ) ) |
| 218 |
213 217
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) ∧ ¬ ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) → ¬ 𝑗 < 𝑀 ) |
| 219 |
197 218
|
condan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) = 0 ) |
| 220 |
219
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) = ( 0 · ( 𝐴 ↑ 𝑗 ) ) ) |
| 221 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → 𝐴 ∈ ℂ ) |
| 222 |
201
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → 𝑗 ∈ ℕ0 ) |
| 223 |
221 222
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 224 |
223
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → ( 0 · ( 𝐴 ↑ 𝑗 ) ) = 0 ) |
| 225 |
220 224
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) = 0 ) |
| 226 |
225
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) = ( 0 / ( 𝐴 ↑ 𝑀 ) ) ) |
| 227 |
128 2 36
|
expne0d |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) ≠ 0 ) |
| 228 |
166 227
|
div0d |
⊢ ( 𝜑 → ( 0 / ( 𝐴 ↑ 𝑀 ) ) = 0 ) |
| 229 |
228
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → ( 0 / ( 𝐴 ↑ 𝑀 ) ) = 0 ) |
| 230 |
226 229
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 0 ... ( deg ‘ 𝐺 ) ) ∖ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) ) → ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) = 0 ) |
| 231 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( deg ‘ 𝐺 ) ) ∈ Fin ) |
| 232 |
177 179 230 231
|
fsumss |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) = Σ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 233 |
135 174 232
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝐴 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 234 |
89 56
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ∈ ℤ ) |
| 235 |
7
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ∈ ℤ ) → ( 𝐼 ‘ 𝑘 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 236 |
89 234 235
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( 𝐼 ‘ 𝑘 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 237 |
236
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( 𝐼 ‘ 𝑘 ) = ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
| 238 |
|
oveq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 ↑ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 239 |
238
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( 𝑧 ↑ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 240 |
237 239
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ) → ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 241 |
240
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝐴 ) → Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( 𝐼 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 242 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ∈ Fin ) |
| 243 |
242 131
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 244 |
9 241 128 243
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = Σ 𝑘 ∈ ( 0 ... ( ( deg ‘ 𝐺 ) − 𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘 + 𝑀 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 245 |
21 20
|
coeid2 |
⊢ ( ( 𝐺 ∈ ( Poly ‘ ℤ ) ∧ 𝐴 ∈ ℂ ) → ( 𝐺 ‘ 𝐴 ) = Σ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) ) |
| 246 |
3 128 245
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = Σ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) ) |
| 247 |
246
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐴 ) / ( 𝐴 ↑ 𝑀 ) ) = ( Σ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 248 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ) → ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℂ ) |
| 249 |
200
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 250 |
248 249
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ) → ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
| 251 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ) → 𝐴 ∈ ℂ ) |
| 252 |
251 249
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 253 |
250 252
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ) → ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) ∈ ℂ ) |
| 254 |
231 166 253 227
|
fsumdivc |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) = Σ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 255 |
247 254
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐴 ) / ( 𝐴 ↑ 𝑀 ) ) = Σ 𝑗 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) · ( 𝐴 ↑ 𝑗 ) ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 256 |
233 244 255
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 257 |
5
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐴 ) / ( 𝐴 ↑ 𝑀 ) ) = ( 0 / ( 𝐴 ↑ 𝑀 ) ) ) |
| 258 |
256 257 228
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 259 |
125 258
|
jca |
⊢ ( 𝜑 → ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) ≠ 0 ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ) |
| 260 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( coeff ‘ 𝑓 ) = ( coeff ‘ 𝐹 ) ) |
| 261 |
260
|
fveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( coeff ‘ 𝑓 ) ‘ 0 ) = ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) |
| 262 |
261
|
neeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( coeff ‘ 𝑓 ) ‘ 0 ) ≠ 0 ↔ ( ( coeff ‘ 𝐹 ) ‘ 0 ) ≠ 0 ) ) |
| 263 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 264 |
263
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝐴 ) = 0 ↔ ( 𝐹 ‘ 𝐴 ) = 0 ) ) |
| 265 |
262 264
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( ( coeff ‘ 𝑓 ) ‘ 0 ) ≠ 0 ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) ↔ ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) ≠ 0 ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ) ) |
| 266 |
265
|
rspcev |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℤ ) ∧ ( ( ( coeff ‘ 𝐹 ) ‘ 0 ) ≠ 0 ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ) → ∃ 𝑓 ∈ ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 ) ≠ 0 ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
| 267 |
60 259 266
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 ) ≠ 0 ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) ) |