| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elaa2lem.a | ⊢ ( 𝜑  →  𝐴  ∈  𝔸 ) | 
						
							| 2 |  | elaa2lem.an0 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 3 |  | elaa2lem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 4 |  | elaa2lem.gn0 | ⊢ ( 𝜑  →  𝐺  ≠  0𝑝 ) | 
						
							| 5 |  | elaa2lem.ga | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 )  =  0 ) | 
						
							| 6 |  | elaa2lem.m | ⊢ 𝑀  =  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  ) | 
						
							| 7 |  | elaa2lem.i | ⊢ 𝐼  =  ( 𝑘  ∈  ℕ0  ↦  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 8 |  | elaa2lem.f | ⊢ 𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 10 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ℤ  ⊆  ℂ ) | 
						
							| 12 |  | dgrcl | ⊢ ( 𝐺  ∈  ( Poly ‘ ℤ )  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | nn0zd | ⊢ ( 𝜑  →  ( deg ‘ 𝐺 )  ∈  ℤ ) | 
						
							| 15 |  | ssrab2 | ⊢ { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ⊆  ℕ0 | 
						
							| 16 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 17 | 15 16 | sseqtri | ⊢ { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ⊆  ( ℤ≥ ‘ 0 ) ) | 
						
							| 19 | 4 | neneqd | ⊢ ( 𝜑  →  ¬  𝐺  =  0𝑝 ) | 
						
							| 20 |  | eqid | ⊢ ( deg ‘ 𝐺 )  =  ( deg ‘ 𝐺 ) | 
						
							| 21 |  | eqid | ⊢ ( coeff ‘ 𝐺 )  =  ( coeff ‘ 𝐺 ) | 
						
							| 22 | 20 21 | dgreq0 | ⊢ ( 𝐺  ∈  ( Poly ‘ ℤ )  →  ( 𝐺  =  0𝑝  ↔  ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) )  =  0 ) ) | 
						
							| 23 | 3 22 | syl | ⊢ ( 𝜑  →  ( 𝐺  =  0𝑝  ↔  ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) )  =  0 ) ) | 
						
							| 24 | 19 23 | mtbid | ⊢ ( 𝜑  →  ¬  ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) )  =  0 ) | 
						
							| 25 | 24 | neqned | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) )  ≠  0 ) | 
						
							| 26 | 13 25 | jca | ⊢ ( 𝜑  →  ( ( deg ‘ 𝐺 )  ∈  ℕ0  ∧  ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) )  ≠  0 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑛  =  ( deg ‘ 𝐺 )  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) ) ) | 
						
							| 28 | 27 | neeq1d | ⊢ ( 𝑛  =  ( deg ‘ 𝐺 )  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0  ↔  ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) )  ≠  0 ) ) | 
						
							| 29 | 28 | elrab | ⊢ ( ( deg ‘ 𝐺 )  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ↔  ( ( deg ‘ 𝐺 )  ∈  ℕ0  ∧  ( ( coeff ‘ 𝐺 ) ‘ ( deg ‘ 𝐺 ) )  ≠  0 ) ) | 
						
							| 30 | 26 29 | sylibr | ⊢ ( 𝜑  →  ( deg ‘ 𝐺 )  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ) | 
						
							| 31 | 30 | ne0d | ⊢ ( 𝜑  →  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ≠  ∅ ) | 
						
							| 32 |  | infssuzcl | ⊢ ( ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ⊆  ( ℤ≥ ‘ 0 )  ∧  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ≠  ∅ )  →  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ) | 
						
							| 33 | 18 31 32 | syl2anc | ⊢ ( 𝜑  →  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ) | 
						
							| 34 | 15 33 | sselid | ⊢ ( 𝜑  →  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ∈  ℕ0 ) | 
						
							| 35 | 6 34 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 36 | 35 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 37 | 14 36 | zsubcld | ⊢ ( 𝜑  →  ( ( deg ‘ 𝐺 )  −  𝑀 )  ∈  ℤ ) | 
						
							| 38 | 6 | a1i | ⊢ ( 𝜑  →  𝑀  =  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  ) ) | 
						
							| 39 |  | infssuzle | ⊢ ( ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ⊆  ( ℤ≥ ‘ 0 )  ∧  ( deg ‘ 𝐺 )  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } )  →  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ≤  ( deg ‘ 𝐺 ) ) | 
						
							| 40 | 18 30 39 | syl2anc | ⊢ ( 𝜑  →  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ≤  ( deg ‘ 𝐺 ) ) | 
						
							| 41 | 38 40 | eqbrtrd | ⊢ ( 𝜑  →  𝑀  ≤  ( deg ‘ 𝐺 ) ) | 
						
							| 42 | 13 | nn0red | ⊢ ( 𝜑  →  ( deg ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 43 | 35 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 44 | 42 43 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 )  ↔  𝑀  ≤  ( deg ‘ 𝐺 ) ) ) | 
						
							| 45 | 41 44 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ) | 
						
							| 46 | 37 45 | jca | ⊢ ( 𝜑  →  ( ( ( deg ‘ 𝐺 )  −  𝑀 )  ∈  ℤ  ∧  0  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ) | 
						
							| 47 |  | elnn0z | ⊢ ( ( ( deg ‘ 𝐺 )  −  𝑀 )  ∈  ℕ0  ↔  ( ( ( deg ‘ 𝐺 )  −  𝑀 )  ∈  ℤ  ∧  0  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ) | 
						
							| 48 | 46 47 | sylibr | ⊢ ( 𝜑  →  ( ( deg ‘ 𝐺 )  −  𝑀 )  ∈  ℕ0 ) | 
						
							| 49 |  | 0zd | ⊢ ( 𝐺  ∈  ( Poly ‘ ℤ )  →  0  ∈  ℤ ) | 
						
							| 50 | 21 | coef2 | ⊢ ( ( 𝐺  ∈  ( Poly ‘ ℤ )  ∧  0  ∈  ℤ )  →  ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℤ ) | 
						
							| 51 | 3 49 50 | syl2anc2 | ⊢ ( 𝜑  →  ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℤ ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℤ ) | 
						
							| 53 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 54 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 55 | 53 54 | nn0addcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  𝑀 )  ∈  ℕ0 ) | 
						
							| 56 | 52 55 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ∈  ℤ ) | 
						
							| 57 | 56 7 | fmptd | ⊢ ( 𝜑  →  𝐼 : ℕ0 ⟶ ℤ ) | 
						
							| 58 |  | elplyr | ⊢ ( ( ℤ  ⊆  ℂ  ∧  ( ( deg ‘ 𝐺 )  −  𝑀 )  ∈  ℕ0  ∧  𝐼 : ℕ0 ⟶ ℤ )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 59 | 11 48 57 58 | syl3anc | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 60 | 9 59 | eqeltrd | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 61 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ) | 
						
							| 62 | 61 | iftrued | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  if ( 𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ,  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ,  0 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 63 |  | iffalse | ⊢ ( ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 )  →  if ( 𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ,  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ,  0 )  =  0 ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  if ( 𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ,  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ,  0 )  =  0 ) | 
						
							| 65 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ) | 
						
							| 66 | 42 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( deg ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 67 | 43 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 68 | 66 67 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( ( deg ‘ 𝐺 )  −  𝑀 )  ∈  ℝ ) | 
						
							| 69 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 70 | 69 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 71 | 68 70 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( ( ( deg ‘ 𝐺 )  −  𝑀 )  <  𝑘  ↔  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ) | 
						
							| 72 | 65 71 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( ( deg ‘ 𝐺 )  −  𝑀 )  <  𝑘 ) | 
						
							| 73 | 66 67 70 | ltsubaddd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( ( ( deg ‘ 𝐺 )  −  𝑀 )  <  𝑘  ↔  ( deg ‘ 𝐺 )  <  ( 𝑘  +  𝑀 ) ) ) | 
						
							| 74 | 72 73 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( deg ‘ 𝐺 )  <  ( 𝑘  +  𝑀 ) ) | 
						
							| 75 |  | olc | ⊢ ( ( deg ‘ 𝐺 )  <  ( 𝑘  +  𝑀 )  →  ( 𝐺  =  0𝑝  ∨  ( deg ‘ 𝐺 )  <  ( 𝑘  +  𝑀 ) ) ) | 
						
							| 76 | 74 75 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( 𝐺  =  0𝑝  ∨  ( deg ‘ 𝐺 )  <  ( 𝑘  +  𝑀 ) ) ) | 
						
							| 77 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  𝐺  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 78 | 55 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( 𝑘  +  𝑀 )  ∈  ℕ0 ) | 
						
							| 79 | 20 21 | dgrlt | ⊢ ( ( 𝐺  ∈  ( Poly ‘ ℤ )  ∧  ( 𝑘  +  𝑀 )  ∈  ℕ0 )  →  ( ( 𝐺  =  0𝑝  ∨  ( deg ‘ 𝐺 )  <  ( 𝑘  +  𝑀 ) )  ↔  ( ( deg ‘ 𝐺 )  ≤  ( 𝑘  +  𝑀 )  ∧  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  =  0 ) ) ) | 
						
							| 80 | 77 78 79 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( ( 𝐺  =  0𝑝  ∨  ( deg ‘ 𝐺 )  <  ( 𝑘  +  𝑀 ) )  ↔  ( ( deg ‘ 𝐺 )  ≤  ( 𝑘  +  𝑀 )  ∧  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  =  0 ) ) ) | 
						
							| 81 | 76 80 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( ( deg ‘ 𝐺 )  ≤  ( 𝑘  +  𝑀 )  ∧  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  =  0 ) ) | 
						
							| 82 | 81 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  =  0 ) | 
						
							| 83 | 64 82 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  if ( 𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ,  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ,  0 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 84 | 62 83 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  if ( 𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ,  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ,  0 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 85 | 84 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ,  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ,  0 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) ) | 
						
							| 86 | 51 11 | fssd | ⊢ ( 𝜑  →  ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℂ ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℂ ) | 
						
							| 88 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 90 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 91 | 89 90 | nn0addcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( 𝑘  +  𝑀 )  ∈  ℕ0 ) | 
						
							| 92 | 87 91 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ∈  ℂ ) | 
						
							| 93 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) )  =  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ) | 
						
							| 94 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  𝜑 ) | 
						
							| 95 | 7 | a1i | ⊢ ( 𝜑  →  𝐼  =  ( 𝑘  ∈  ℕ0  ↦  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) ) | 
						
							| 96 | 95 56 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐼 ‘ 𝑘 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 97 | 94 89 96 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( 𝐼 ‘ 𝑘 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 98 | 97 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( 𝐼 ‘ 𝑘 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 99 | 98 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 100 | 93 99 | sumeq12rdv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 101 | 100 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 102 | 9 101 | eqtrd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 103 | 60 48 92 102 | coeeq2 | ⊢ ( 𝜑  →  ( coeff ‘ 𝐹 )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  ≤  ( ( deg ‘ 𝐺 )  −  𝑀 ) ,  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ,  0 ) ) ) | 
						
							| 104 | 85 103 95 | 3eqtr4d | ⊢ ( 𝜑  →  ( coeff ‘ 𝐹 )  =  𝐼 ) | 
						
							| 105 | 104 | fveq1d | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐹 ) ‘ 0 )  =  ( 𝐼 ‘ 0 ) ) | 
						
							| 106 |  | oveq1 | ⊢ ( 𝑘  =  0  →  ( 𝑘  +  𝑀 )  =  ( 0  +  𝑀 ) ) | 
						
							| 107 | 106 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 𝑘  +  𝑀 )  =  ( 0  +  𝑀 ) ) | 
						
							| 108 | 10 36 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 109 | 108 | addlidd | ⊢ ( 𝜑  →  ( 0  +  𝑀 )  =  𝑀 ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 0  +  𝑀 )  =  𝑀 ) | 
						
							| 111 | 107 110 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 𝑘  +  𝑀 )  =  𝑀 ) | 
						
							| 112 | 111 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  =  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) | 
						
							| 113 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 114 | 113 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 115 | 51 35 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 116 | 95 112 114 115 | fvmptd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 0 )  =  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) | 
						
							| 117 |  | eqidd | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 )  =  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) | 
						
							| 118 | 105 116 117 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐹 ) ‘ 0 )  =  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) | 
						
							| 119 | 38 33 | eqeltrd | ⊢ ( 𝜑  →  𝑀  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ) | 
						
							| 120 |  | fveq2 | ⊢ ( 𝑛  =  𝑀  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  =  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 ) ) | 
						
							| 121 | 120 | neeq1d | ⊢ ( 𝑛  =  𝑀  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0  ↔  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 )  ≠  0 ) ) | 
						
							| 122 | 121 | elrab | ⊢ ( 𝑀  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ↔  ( 𝑀  ∈  ℕ0  ∧  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 )  ≠  0 ) ) | 
						
							| 123 | 119 122 | sylib | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ0  ∧  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 )  ≠  0 ) ) | 
						
							| 124 | 123 | simprd | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑀 )  ≠  0 ) | 
						
							| 125 | 118 124 | eqnetrd | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐹 ) ‘ 0 )  ≠  0 ) | 
						
							| 126 | 3 49 | syl | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 127 |  | aasscn | ⊢ 𝔸  ⊆  ℂ | 
						
							| 128 | 127 1 | sselid | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 129 | 94 128 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 130 | 129 89 | expcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 131 | 92 130 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 132 |  | fvoveq1 | ⊢ ( 𝑘  =  ( 𝑗  −  𝑀 )  →  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  =  ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) ) ) | 
						
							| 133 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑗  −  𝑀 )  →  ( 𝐴 ↑ 𝑘 )  =  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) ) | 
						
							| 134 | 132 133 | oveq12d | ⊢ ( 𝑘  =  ( 𝑗  −  𝑀 )  →  ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝐴 ↑ 𝑘 ) )  =  ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) ) ) | 
						
							| 135 | 36 126 37 131 134 | fsumshft | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝐴 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( ( 0  +  𝑀 ) ... ( ( ( deg ‘ 𝐺 )  −  𝑀 )  +  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) ) ) | 
						
							| 136 | 10 14 | sselid | ⊢ ( 𝜑  →  ( deg ‘ 𝐺 )  ∈  ℂ ) | 
						
							| 137 | 136 108 | npcand | ⊢ ( 𝜑  →  ( ( ( deg ‘ 𝐺 )  −  𝑀 )  +  𝑀 )  =  ( deg ‘ 𝐺 ) ) | 
						
							| 138 | 109 137 | oveq12d | ⊢ ( 𝜑  →  ( ( 0  +  𝑀 ) ... ( ( ( deg ‘ 𝐺 )  −  𝑀 )  +  𝑀 ) )  =  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) | 
						
							| 139 | 138 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( ( 0  +  𝑀 ) ... ( ( ( deg ‘ 𝐺 )  −  𝑀 )  +  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) )  =  Σ 𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) ) ) | 
						
							| 140 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 141 | 140 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 142 | 10 141 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ℂ ) | 
						
							| 143 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑀  ∈  ℂ ) | 
						
							| 144 | 142 143 | npcand | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( 𝑗  −  𝑀 )  +  𝑀 )  =  𝑗 ) | 
						
							| 145 | 144 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  =  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ) | 
						
							| 146 | 145 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) )  =  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) ) ) | 
						
							| 147 | 128 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 148 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝐴  ≠  0 ) | 
						
							| 149 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 150 | 147 148 149 141 | expsubd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) )  =  ( ( 𝐴 ↑ 𝑗 )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 151 | 150 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) )  =  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( ( 𝐴 ↑ 𝑗 )  /  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 152 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℂ ) | 
						
							| 153 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  0  ∈  ℝ ) | 
						
							| 154 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 155 | 141 | zred | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 156 | 35 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑀 ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  0  ≤  𝑀 ) | 
						
							| 158 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) )  →  𝑀  ≤  𝑗 ) | 
						
							| 159 | 158 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑀  ≤  𝑗 ) | 
						
							| 160 | 153 154 155 157 159 | letrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  0  ≤  𝑗 ) | 
						
							| 161 | 141 160 | jca | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( 𝑗  ∈  ℤ  ∧  0  ≤  𝑗 ) ) | 
						
							| 162 |  | elnn0z | ⊢ ( 𝑗  ∈  ℕ0  ↔  ( 𝑗  ∈  ℤ  ∧  0  ≤  𝑗 ) ) | 
						
							| 163 | 161 162 | sylibr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 164 | 152 163 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 165 | 147 163 | expcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 166 | 128 35 | expcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 168 | 147 148 149 | expne0d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( 𝐴 ↑ 𝑀 )  ≠  0 ) | 
						
							| 169 | 164 165 167 168 | divassd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) )  =  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( ( 𝐴 ↑ 𝑗 )  /  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 170 | 169 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( ( 𝐴 ↑ 𝑗 )  /  ( 𝐴 ↑ 𝑀 ) ) )  =  ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 171 | 151 170 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) )  =  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) ) ) | 
						
							| 172 | 146 171 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) )  =  ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 173 | 172 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) )  =  Σ 𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 174 | 139 173 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( ( 0  +  𝑀 ) ... ( ( ( deg ‘ 𝐺 )  −  𝑀 )  +  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( ( 𝑗  −  𝑀 )  +  𝑀 ) )  ·  ( 𝐴 ↑ ( 𝑗  −  𝑀 ) ) )  =  Σ 𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 175 | 35 16 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 176 |  | fzss1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝑀 ... ( deg ‘ 𝐺 ) )  ⊆  ( 0 ... ( deg ‘ 𝐺 ) ) ) | 
						
							| 177 | 175 176 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... ( deg ‘ 𝐺 ) )  ⊆  ( 0 ... ( deg ‘ 𝐺 ) ) ) | 
						
							| 178 | 164 165 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  ∈  ℂ ) | 
						
							| 179 | 178 167 168 | divcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) )  ∈  ℂ ) | 
						
							| 180 | 36 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 181 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  ( deg ‘ 𝐺 )  ∈  ℤ ) | 
						
							| 182 |  | eldifi | ⊢ ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ) | 
						
							| 183 | 182 | elfzelzd | ⊢ ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 184 | 183 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 185 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  ¬  𝑗  <  𝑀 ) | 
						
							| 186 | 43 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 187 | 184 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 188 | 186 187 | lenltd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  ( 𝑀  ≤  𝑗  ↔  ¬  𝑗  <  𝑀 ) ) | 
						
							| 189 | 185 188 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  𝑀  ≤  𝑗 ) | 
						
							| 190 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) )  →  𝑗  ≤  ( deg ‘ 𝐺 ) ) | 
						
							| 191 | 182 190 | syl | ⊢ ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ≤  ( deg ‘ 𝐺 ) ) | 
						
							| 192 | 191 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  𝑗  ≤  ( deg ‘ 𝐺 ) ) | 
						
							| 193 | 180 181 184 189 192 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) | 
						
							| 194 |  | eldifn | ⊢ ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  ¬  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) | 
						
							| 195 | 194 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  𝑗  <  𝑀 )  →  ¬  𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) | 
						
							| 196 | 193 195 | condan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  𝑗  <  𝑀 ) | 
						
							| 197 | 196 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  𝑗  <  𝑀 ) | 
						
							| 198 | 6 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  𝑀  =  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  ) ) | 
						
							| 199 | 17 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ⊆  ( ℤ≥ ‘ 0 ) ) | 
						
							| 200 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 201 | 182 200 | syl | ⊢ ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 202 | 201 | adantr | ⊢ ( ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 203 |  | neqne | ⊢ ( ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ≠  0 ) | 
						
							| 204 | 203 | adantl | ⊢ ( ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ≠  0 ) | 
						
							| 205 | 202 204 | jca | ⊢ ( ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  ( 𝑗  ∈  ℕ0  ∧  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ≠  0 ) ) | 
						
							| 206 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  =  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 ) ) | 
						
							| 207 | 206 | neeq1d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0  ↔  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ≠  0 ) ) | 
						
							| 208 | 207 | elrab | ⊢ ( 𝑗  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ↔  ( 𝑗  ∈  ℕ0  ∧  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ≠  0 ) ) | 
						
							| 209 | 205 208 | sylibr | ⊢ ( ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  𝑗  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ) | 
						
							| 210 | 209 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  𝑗  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ) | 
						
							| 211 |  | infssuzle | ⊢ ( ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 }  ⊆  ( ℤ≥ ‘ 0 )  ∧  𝑗  ∈  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } )  →  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ≤  𝑗 ) | 
						
							| 212 | 199 210 211 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝐺 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ≤  𝑗 ) | 
						
							| 213 | 198 212 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  𝑀  ≤  𝑗 ) | 
						
							| 214 | 43 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  𝑀  ∈  ℝ ) | 
						
							| 215 | 183 | zred | ⊢ ( 𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 216 | 215 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  𝑗  ∈  ℝ ) | 
						
							| 217 | 214 216 | lenltd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  ( 𝑀  ≤  𝑗  ↔  ¬  𝑗  <  𝑀 ) ) | 
						
							| 218 | 213 217 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  ∧  ¬  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 )  →  ¬  𝑗  <  𝑀 ) | 
						
							| 219 | 197 218 | condan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  =  0 ) | 
						
							| 220 | 219 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  =  ( 0  ·  ( 𝐴 ↑ 𝑗 ) ) ) | 
						
							| 221 | 128 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 222 | 201 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 223 | 221 222 | expcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 224 | 223 | mul02d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  ( 0  ·  ( 𝐴 ↑ 𝑗 ) )  =  0 ) | 
						
							| 225 | 220 224 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  =  0 ) | 
						
							| 226 | 225 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) )  =  ( 0  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 227 | 128 2 36 | expne0d | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑀 )  ≠  0 ) | 
						
							| 228 | 166 227 | div0d | ⊢ ( 𝜑  →  ( 0  /  ( 𝐴 ↑ 𝑀 ) )  =  0 ) | 
						
							| 229 | 228 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  ( 0  /  ( 𝐴 ↑ 𝑀 ) )  =  0 ) | 
						
							| 230 | 226 229 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 0 ... ( deg ‘ 𝐺 ) )  ∖  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ) )  →  ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) )  =  0 ) | 
						
							| 231 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... ( deg ‘ 𝐺 ) )  ∈  Fin ) | 
						
							| 232 | 177 179 230 231 | fsumss | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) )  =  Σ 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 233 | 135 174 232 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝐴 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 234 | 89 56 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ∈  ℤ ) | 
						
							| 235 | 7 | fvmpt2 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ∈  ℤ )  →  ( 𝐼 ‘ 𝑘 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 236 | 89 234 235 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( 𝐼 ‘ 𝑘 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 237 | 236 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( 𝐼 ‘ 𝑘 )  =  ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 238 |  | oveq1 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑧 ↑ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 239 | 238 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( 𝑧 ↑ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 240 | 237 239 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑧  =  𝐴 )  ∧  𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) )  →  ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 241 | 240 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑧  =  𝐴 )  →  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( 𝐼 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 242 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) )  ∈  Fin ) | 
						
							| 243 | 242 131 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 244 | 9 241 128 243 | fvmptd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝐺 )  −  𝑀 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ ( 𝑘  +  𝑀 ) )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 245 | 21 20 | coeid2 | ⊢ ( ( 𝐺  ∈  ( Poly ‘ ℤ )  ∧  𝐴  ∈  ℂ )  →  ( 𝐺 ‘ 𝐴 )  =  Σ 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) ) ) | 
						
							| 246 | 3 128 245 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 )  =  Σ 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) ) ) | 
						
							| 247 | 246 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐴 )  /  ( 𝐴 ↑ 𝑀 ) )  =  ( Σ 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 248 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) )  →  ( coeff ‘ 𝐺 ) : ℕ0 ⟶ ℂ ) | 
						
							| 249 | 200 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 250 | 248 249 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) )  →  ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 251 | 128 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 252 | 251 249 | expcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 253 | 250 252 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) )  →  ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  ∈  ℂ ) | 
						
							| 254 | 231 166 253 227 | fsumdivc | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) )  =  Σ 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 255 | 247 254 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐴 )  /  ( 𝐴 ↑ 𝑀 ) )  =  Σ 𝑗  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( ( ( coeff ‘ 𝐺 ) ‘ 𝑗 )  ·  ( 𝐴 ↑ 𝑗 ) )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 256 | 233 244 255 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( ( 𝐺 ‘ 𝐴 )  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 257 | 5 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐴 )  /  ( 𝐴 ↑ 𝑀 ) )  =  ( 0  /  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 258 | 256 257 228 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 259 | 125 258 | jca | ⊢ ( 𝜑  →  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ≠  0  ∧  ( 𝐹 ‘ 𝐴 )  =  0 ) ) | 
						
							| 260 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( coeff ‘ 𝑓 )  =  ( coeff ‘ 𝐹 ) ) | 
						
							| 261 | 260 | fveq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( coeff ‘ 𝑓 ) ‘ 0 )  =  ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) | 
						
							| 262 | 261 | neeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ↔  ( ( coeff ‘ 𝐹 ) ‘ 0 )  ≠  0 ) ) | 
						
							| 263 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 264 | 263 | eqeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝐴 )  =  0  ↔  ( 𝐹 ‘ 𝐴 )  =  0 ) ) | 
						
							| 265 | 262 264 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 )  ↔  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ≠  0  ∧  ( 𝐹 ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 266 | 265 | rspcev | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ≠  0  ∧  ( 𝐹 ‘ 𝐴 )  =  0 ) )  →  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 267 | 60 259 266 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) |