| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrle.1 |
|
| 2 |
|
dgrle.2 |
|
| 3 |
|
dgrle.3 |
|
| 4 |
|
dgrle.4 |
|
| 5 |
|
simpll |
|
| 6 |
|
simpr |
|
| 7 |
|
simplr |
|
| 8 |
|
nn0uz |
|
| 9 |
7 8
|
eleqtrdi |
|
| 10 |
2
|
nn0zd |
|
| 11 |
10
|
ad2antrr |
|
| 12 |
|
elfz5 |
|
| 13 |
9 11 12
|
syl2anc |
|
| 14 |
6 13
|
mpbird |
|
| 15 |
5 14 3
|
syl2anc |
|
| 16 |
|
0cnd |
|
| 17 |
15 16
|
ifclda |
|
| 18 |
17
|
fmpttd |
|
| 19 |
|
simpr |
|
| 20 |
|
eqid |
|
| 21 |
20
|
fvmpt2 |
|
| 22 |
19 17 21
|
syl2anc |
|
| 23 |
22
|
neeq1d |
|
| 24 |
|
iffalse |
|
| 25 |
24
|
necon1ai |
|
| 26 |
23 25
|
biimtrdi |
|
| 27 |
26
|
ralrimiva |
|
| 28 |
|
nfv |
|
| 29 |
|
nffvmpt1 |
|
| 30 |
|
nfcv |
|
| 31 |
29 30
|
nfne |
|
| 32 |
|
nfv |
|
| 33 |
31 32
|
nfim |
|
| 34 |
|
fveq2 |
|
| 35 |
34
|
neeq1d |
|
| 36 |
|
breq1 |
|
| 37 |
35 36
|
imbi12d |
|
| 38 |
28 33 37
|
cbvralw |
|
| 39 |
27 38
|
sylib |
|
| 40 |
|
plyco0 |
|
| 41 |
2 18 40
|
syl2anc |
|
| 42 |
39 41
|
mpbird |
|
| 43 |
|
oveq2 |
|
| 44 |
34 43
|
oveq12d |
|
| 45 |
|
nfcv |
|
| 46 |
|
nfcv |
|
| 47 |
|
nfcv |
|
| 48 |
29 46 47
|
nfov |
|
| 49 |
44 45 48
|
cbvsum |
|
| 50 |
|
elfznn0 |
|
| 51 |
50
|
adantl |
|
| 52 |
|
elfzle2 |
|
| 53 |
52
|
adantl |
|
| 54 |
53
|
iftrued |
|
| 55 |
3
|
adantlr |
|
| 56 |
54 55
|
eqeltrd |
|
| 57 |
51 56 21
|
syl2anc |
|
| 58 |
57 54
|
eqtrd |
|
| 59 |
58
|
oveq1d |
|
| 60 |
59
|
sumeq2dv |
|
| 61 |
49 60
|
eqtr3id |
|
| 62 |
61
|
mpteq2dva |
|
| 63 |
4 62
|
eqtr4d |
|
| 64 |
1 2 18 42 63
|
coeeq |
|