Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dgrle.1 | |
|
dgrle.2 | |
||
dgrle.3 | |
||
dgrle.4 | |
||
Assertion | dgrle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgrle.1 | |
|
2 | dgrle.2 | |
|
3 | dgrle.3 | |
|
4 | dgrle.4 | |
|
5 | 1 2 3 4 | coeeq2 | |
6 | 5 | ad2antrr | |
7 | 6 | fveq1d | |
8 | nfcv | |
|
9 | nfv | |
|
10 | nffvmpt1 | |
|
11 | 10 | nfeq1 | |
12 | 9 11 | nfim | |
13 | breq1 | |
|
14 | 13 | notbid | |
15 | fveqeq2 | |
|
16 | 14 15 | imbi12d | |
17 | iffalse | |
|
18 | 17 | fveq2d | |
19 | 0cn | |
|
20 | fvi | |
|
21 | 19 20 | ax-mp | |
22 | 18 21 | eqtrdi | |
23 | eqid | |
|
24 | 23 | fvmpt2i | |
25 | 24 | eqeq1d | |
26 | 22 25 | imbitrrid | |
27 | 8 12 16 26 | vtoclgaf | |
28 | 27 | imp | |
29 | 28 | adantll | |
30 | 7 29 | eqtrd | |
31 | 30 | ex | |
32 | 31 | necon1ad | |
33 | 32 | ralrimiva | |
34 | eqid | |
|
35 | 34 | coef3 | |
36 | 1 35 | syl | |
37 | plyco0 | |
|
38 | 2 36 37 | syl2anc | |
39 | 33 38 | mpbird | |
40 | eqid | |
|
41 | 34 40 | dgrlb | |
42 | 1 2 39 41 | syl3anc | |