| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem1.x |  |-  ( ph -> X C_ CC ) | 
						
							| 2 |  | etransclem1.p |  |-  ( ph -> P e. NN ) | 
						
							| 3 |  | etransclem1.h |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 4 |  | etransclem1.j |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 5 | 1 | sselda |  |-  ( ( ph /\ x e. X ) -> x e. CC ) | 
						
							| 6 | 4 | elfzelzd |  |-  ( ph -> J e. ZZ ) | 
						
							| 7 | 6 | zcnd |  |-  ( ph -> J e. CC ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ph /\ x e. X ) -> J e. CC ) | 
						
							| 9 | 5 8 | subcld |  |-  ( ( ph /\ x e. X ) -> ( x - J ) e. CC ) | 
						
							| 10 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 11 | 2 10 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 12 | 2 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 13 | 11 12 | ifcld |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ x e. X ) -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 15 | 9 14 | expcld |  |-  ( ( ph /\ x e. X ) -> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) e. CC ) | 
						
							| 16 |  | eqid |  |-  ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 17 | 15 16 | fmptd |  |-  ( ph -> ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) : X --> CC ) | 
						
							| 18 |  | oveq2 |  |-  ( j = n -> ( x - j ) = ( x - n ) ) | 
						
							| 19 |  | eqeq1 |  |-  ( j = n -> ( j = 0 <-> n = 0 ) ) | 
						
							| 20 | 19 | ifbid |  |-  ( j = n -> if ( j = 0 , ( P - 1 ) , P ) = if ( n = 0 , ( P - 1 ) , P ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( j = n -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 22 | 21 | mpteq2dv |  |-  ( j = n -> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 23 | 22 | cbvmptv |  |-  ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( n e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 24 | 3 23 | eqtri |  |-  H = ( n e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 25 |  | oveq2 |  |-  ( n = J -> ( x - n ) = ( x - J ) ) | 
						
							| 26 |  | eqeq1 |  |-  ( n = J -> ( n = 0 <-> J = 0 ) ) | 
						
							| 27 | 26 | ifbid |  |-  ( n = J -> if ( n = 0 , ( P - 1 ) , P ) = if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 28 | 25 27 | oveq12d |  |-  ( n = J -> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) = ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 29 | 28 | mpteq2dv |  |-  ( n = J -> ( x e. X |-> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 30 |  | cnex |  |-  CC e. _V | 
						
							| 31 | 30 | ssex |  |-  ( X C_ CC -> X e. _V ) | 
						
							| 32 |  | mptexg |  |-  ( X e. _V -> ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) e. _V ) | 
						
							| 33 | 1 31 32 | 3syl |  |-  ( ph -> ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) e. _V ) | 
						
							| 34 | 24 29 4 33 | fvmptd3 |  |-  ( ph -> ( H ` J ) = ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 35 | 34 | feq1d |  |-  ( ph -> ( ( H ` J ) : X --> CC <-> ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) : X --> CC ) ) | 
						
							| 36 | 17 35 | mpbird |  |-  ( ph -> ( H ` J ) : X --> CC ) |