Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem1.x |
|- ( ph -> X C_ CC ) |
2 |
|
etransclem1.p |
|- ( ph -> P e. NN ) |
3 |
|
etransclem1.h |
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
4 |
|
etransclem1.j |
|- ( ph -> J e. ( 0 ... M ) ) |
5 |
1
|
sselda |
|- ( ( ph /\ x e. X ) -> x e. CC ) |
6 |
4
|
elfzelzd |
|- ( ph -> J e. ZZ ) |
7 |
6
|
zcnd |
|- ( ph -> J e. CC ) |
8 |
7
|
adantr |
|- ( ( ph /\ x e. X ) -> J e. CC ) |
9 |
5 8
|
subcld |
|- ( ( ph /\ x e. X ) -> ( x - J ) e. CC ) |
10 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
11 |
2 10
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
12 |
2
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
13 |
11 12
|
ifcld |
|- ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. X ) -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) |
15 |
9 14
|
expcld |
|- ( ( ph /\ x e. X ) -> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) e. CC ) |
16 |
|
eqid |
|- ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) |
17 |
15 16
|
fmptd |
|- ( ph -> ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) : X --> CC ) |
18 |
|
oveq2 |
|- ( j = n -> ( x - j ) = ( x - n ) ) |
19 |
|
eqeq1 |
|- ( j = n -> ( j = 0 <-> n = 0 ) ) |
20 |
19
|
ifbid |
|- ( j = n -> if ( j = 0 , ( P - 1 ) , P ) = if ( n = 0 , ( P - 1 ) , P ) ) |
21 |
18 20
|
oveq12d |
|- ( j = n -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) |
22 |
21
|
mpteq2dv |
|- ( j = n -> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) ) |
23 |
22
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( n e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) ) |
24 |
3 23
|
eqtri |
|- H = ( n e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) ) |
25 |
|
oveq2 |
|- ( n = J -> ( x - n ) = ( x - J ) ) |
26 |
|
eqeq1 |
|- ( n = J -> ( n = 0 <-> J = 0 ) ) |
27 |
26
|
ifbid |
|- ( n = J -> if ( n = 0 , ( P - 1 ) , P ) = if ( J = 0 , ( P - 1 ) , P ) ) |
28 |
25 27
|
oveq12d |
|- ( n = J -> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) = ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) |
29 |
28
|
mpteq2dv |
|- ( n = J -> ( x e. X |-> ( ( x - n ) ^ if ( n = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) |
30 |
|
cnex |
|- CC e. _V |
31 |
30
|
ssex |
|- ( X C_ CC -> X e. _V ) |
32 |
|
mptexg |
|- ( X e. _V -> ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
33 |
1 31 32
|
3syl |
|- ( ph -> ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
34 |
24 29 4 33
|
fvmptd3 |
|- ( ph -> ( H ` J ) = ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) |
35 |
34
|
feq1d |
|- ( ph -> ( ( H ` J ) : X --> CC <-> ( x e. X |-> ( ( x - J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) : X --> CC ) ) |
36 |
17 35
|
mpbird |
|- ( ph -> ( H ` J ) : X --> CC ) |