| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem2.xf |  |-  F/_ x F | 
						
							| 2 |  | etransclem2.f |  |-  ( ph -> F : RR --> CC ) | 
						
							| 3 |  | etransclem2.dvnf |  |-  ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 4 |  | etransclem2.g |  |-  G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 5 | 4 | oveq2i |  |-  ( RR _D G ) = ( RR _D ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) | 
						
							| 6 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 7 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 8 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 9 | 8 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 10 |  | reopn |  |-  RR e. ( topGen ` ran (,) ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> RR e. ( topGen ` ran (,) ) ) | 
						
							| 12 |  | fzfid |  |-  ( ph -> ( 0 ... R ) e. Fin ) | 
						
							| 13 |  | fzelp1 |  |-  ( i e. ( 0 ... R ) -> i e. ( 0 ... ( R + 1 ) ) ) | 
						
							| 14 | 13 3 | sylan2 |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 16 |  | simp3 |  |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> x e. RR ) | 
						
							| 17 | 15 16 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) | 
						
							| 18 |  | fzp1elp1 |  |-  ( i e. ( 0 ... R ) -> ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) | 
						
							| 19 |  | ovex |  |-  ( i + 1 ) e. _V | 
						
							| 20 |  | eleq1 |  |-  ( j = ( i + 1 ) -> ( j e. ( 0 ... ( R + 1 ) ) <-> ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) ) | 
						
							| 21 | 20 | anbi2d |  |-  ( j = ( i + 1 ) -> ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) <-> ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( j = ( i + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( i + 1 ) ) ) | 
						
							| 23 | 22 | feq1d |  |-  ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) : RR --> CC <-> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) | 
						
							| 24 | 21 23 | imbi12d |  |-  ( j = ( i + 1 ) -> ( ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) <-> ( ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) ) | 
						
							| 25 |  | eleq1 |  |-  ( i = j -> ( i e. ( 0 ... ( R + 1 ) ) <-> j e. ( 0 ... ( R + 1 ) ) ) ) | 
						
							| 26 | 25 | anbi2d |  |-  ( i = j -> ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) <-> ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) ) ) | 
						
							| 27 |  | fveq2 |  |-  ( i = j -> ( ( RR Dn F ) ` i ) = ( ( RR Dn F ) ` j ) ) | 
						
							| 28 | 27 | feq1d |  |-  ( i = j -> ( ( ( RR Dn F ) ` i ) : RR --> CC <-> ( ( RR Dn F ) ` j ) : RR --> CC ) ) | 
						
							| 29 | 26 28 | imbi12d |  |-  ( i = j -> ( ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) <-> ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) ) ) | 
						
							| 30 | 29 3 | chvarvv |  |-  ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) | 
						
							| 31 | 19 24 30 | vtocl |  |-  ( ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) | 
						
							| 32 | 18 31 | sylan2 |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) | 
						
							| 33 | 32 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) | 
						
							| 34 | 33 16 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) | 
						
							| 35 | 14 | ffnd |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) Fn RR ) | 
						
							| 36 |  | nfcv |  |-  F/_ x RR | 
						
							| 37 |  | nfcv |  |-  F/_ x Dn | 
						
							| 38 | 36 37 1 | nfov |  |-  F/_ x ( RR Dn F ) | 
						
							| 39 |  | nfcv |  |-  F/_ x i | 
						
							| 40 | 38 39 | nffv |  |-  F/_ x ( ( RR Dn F ) ` i ) | 
						
							| 41 | 40 | dffn5f |  |-  ( ( ( RR Dn F ) ` i ) Fn RR <-> ( ( RR Dn F ) ` i ) = ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) | 
						
							| 42 | 35 41 | sylib |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) = ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) | 
						
							| 43 | 42 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) = ( ( RR Dn F ) ` i ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( RR _D ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) | 
						
							| 45 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 46 | 45 | a1i |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> RR C_ CC ) | 
						
							| 47 |  | ffdm |  |-  ( F : RR --> CC -> ( F : dom F --> CC /\ dom F C_ RR ) ) | 
						
							| 48 | 2 47 | syl |  |-  ( ph -> ( F : dom F --> CC /\ dom F C_ RR ) ) | 
						
							| 49 |  | cnex |  |-  CC e. _V | 
						
							| 50 | 49 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 51 |  | reex |  |-  RR e. _V | 
						
							| 52 |  | elpm2g |  |-  ( ( CC e. _V /\ RR e. _V ) -> ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) ) | 
						
							| 53 | 50 51 52 | sylancl |  |-  ( ph -> ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) ) | 
						
							| 54 | 48 53 | mpbird |  |-  ( ph -> F e. ( CC ^pm RR ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> F e. ( CC ^pm RR ) ) | 
						
							| 56 |  | elfznn0 |  |-  ( i e. ( 0 ... R ) -> i e. NN0 ) | 
						
							| 57 | 56 | adantl |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) | 
						
							| 58 |  | dvnp1 |  |-  ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ i e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) | 
						
							| 59 | 46 55 57 58 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) | 
						
							| 60 | 32 | ffnd |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) Fn RR ) | 
						
							| 61 |  | nfcv |  |-  F/_ x ( i + 1 ) | 
						
							| 62 | 38 61 | nffv |  |-  F/_ x ( ( RR Dn F ) ` ( i + 1 ) ) | 
						
							| 63 | 62 | dffn5f |  |-  ( ( ( RR Dn F ) ` ( i + 1 ) ) Fn RR <-> ( ( RR Dn F ) ` ( i + 1 ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) | 
						
							| 64 | 60 63 | sylib |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) | 
						
							| 65 | 44 59 64 | 3eqtr2d |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( RR _D ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) | 
						
							| 66 | 6 7 9 11 12 17 34 65 | dvmptfsum |  |-  ( ph -> ( RR _D ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) | 
						
							| 67 | 5 66 | eqtrid |  |-  ( ph -> ( RR _D G ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |