| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem2.xf | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | etransclem2.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 3 |  | etransclem2.dvnf | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 4 |  | etransclem2.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 5 | 4 | oveq2i | ⊢ ( ℝ  D  𝐺 )  =  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 6 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 7 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 8 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 10 |  | reopn | ⊢ ℝ  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 12 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑅 )  ∈  Fin ) | 
						
							| 13 |  | fzelp1 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑅 )  →  𝑖  ∈  ( 0 ... ( 𝑅  +  1 ) ) ) | 
						
							| 14 | 13 3 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 )  ∧  𝑥  ∈  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 16 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 17 | 15 16 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 18 |  | fzp1elp1 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑅 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... ( 𝑅  +  1 ) ) ) | 
						
							| 19 |  | ovex | ⊢ ( 𝑖  +  1 )  ∈  V | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) )  ↔  ( 𝑖  +  1 )  ∈  ( 0 ... ( 𝑅  +  1 ) ) ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  ↔  ( 𝜑  ∧  ( 𝑖  +  1 )  ∈  ( 0 ... ( 𝑅  +  1 ) ) ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 23 | 22 | feq1d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) ) | 
						
							| 24 | 21 23 | imbi12d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ )  ↔  ( ( 𝜑  ∧  ( 𝑖  +  1 )  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) ) ) | 
						
							| 25 |  | eleq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ∈  ( 0 ... ( 𝑅  +  1 ) )  ↔  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) ) ) | 
						
							| 26 | 25 | anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  ↔  ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) ) ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 28 | 27 | feq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) ) | 
						
							| 29 | 26 28 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) ) ) | 
						
							| 30 | 29 3 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) | 
						
							| 31 | 19 24 30 | vtocl | ⊢ ( ( 𝜑  ∧  ( 𝑖  +  1 )  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) | 
						
							| 32 | 18 31 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) | 
						
							| 33 | 32 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 )  ∧  𝑥  ∈  ℝ )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) | 
						
							| 34 | 33 16 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 )  ∧  𝑥  ∈  ℝ )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 35 | 14 | ffnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 )  Fn  ℝ ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑥  D𝑛 | 
						
							| 38 | 36 37 1 | nfov | ⊢ Ⅎ 𝑥 ( ℝ  D𝑛  𝐹 ) | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑥 𝑖 | 
						
							| 40 | 38 39 | nffv | ⊢ Ⅎ 𝑥 ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) | 
						
							| 41 | 40 | dffn5f | ⊢ ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 )  Fn  ℝ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 42 | 35 41 | sylib | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 43 | 42 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( 𝑥  ∈  ℝ  ↦  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) )  =  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ) ) | 
						
							| 45 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 46 | 45 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 47 |  | ffdm | ⊢ ( 𝐹 : ℝ ⟶ ℂ  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) ) | 
						
							| 48 | 2 47 | syl | ⊢ ( 𝜑  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) ) | 
						
							| 49 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 50 | 49 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 51 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 52 |  | elpm2g | ⊢ ( ( ℂ  ∈  V  ∧  ℝ  ∈  V )  →  ( 𝐹  ∈  ( ℂ  ↑pm  ℝ )  ↔  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) ) ) | 
						
							| 53 | 50 51 52 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ℂ  ↑pm  ℝ )  ↔  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) ) ) | 
						
							| 54 | 48 53 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 56 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑅 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 58 |  | dvnp1 | ⊢ ( ( ℝ  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  ℝ )  ∧  𝑖  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) )  =  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ) ) | 
						
							| 59 | 46 55 57 58 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) )  =  ( ℝ  D  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ) ) | 
						
							| 60 | 32 | ffnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) )  Fn  ℝ ) | 
						
							| 61 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝑖  +  1 ) | 
						
							| 62 | 38 61 | nffv | ⊢ Ⅎ 𝑥 ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) | 
						
							| 63 | 62 | dffn5f | ⊢ ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) )  Fn  ℝ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 64 | 60 63 | sylib | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 65 | 44 59 64 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 66 | 6 7 9 11 12 17 34 65 | dvmptfsum | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 67 | 5 66 | eqtrid | ⊢ ( 𝜑  →  ( ℝ  D  𝐺 )  =  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) |