Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptfsum.j |
β’ π½ = ( πΎ βΎt π ) |
2 |
|
dvmptfsum.k |
β’ πΎ = ( TopOpen β βfld ) |
3 |
|
dvmptfsum.s |
β’ ( π β π β { β , β } ) |
4 |
|
dvmptfsum.x |
β’ ( π β π β π½ ) |
5 |
|
dvmptfsum.i |
β’ ( π β πΌ β Fin ) |
6 |
|
dvmptfsum.a |
β’ ( ( π β§ π β πΌ β§ π₯ β π ) β π΄ β β ) |
7 |
|
dvmptfsum.b |
β’ ( ( π β§ π β πΌ β§ π₯ β π ) β π΅ β β ) |
8 |
|
dvmptfsum.d |
β’ ( ( π β§ π β πΌ ) β ( π D ( π₯ β π β¦ π΄ ) ) = ( π₯ β π β¦ π΅ ) ) |
9 |
|
ssid |
β’ πΌ β πΌ |
10 |
|
sseq1 |
β’ ( π = β
β ( π β πΌ β β
β πΌ ) ) |
11 |
|
sumeq1 |
β’ ( π = β
β Ξ£ π β π π΄ = Ξ£ π β β
π΄ ) |
12 |
11
|
mpteq2dv |
β’ ( π = β
β ( π₯ β π β¦ Ξ£ π β π π΄ ) = ( π₯ β π β¦ Ξ£ π β β
π΄ ) ) |
13 |
12
|
oveq2d |
β’ ( π = β
β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π D ( π₯ β π β¦ Ξ£ π β β
π΄ ) ) ) |
14 |
|
sumeq1 |
β’ ( π = β
β Ξ£ π β π π΅ = Ξ£ π β β
π΅ ) |
15 |
14
|
mpteq2dv |
β’ ( π = β
β ( π₯ β π β¦ Ξ£ π β π π΅ ) = ( π₯ β π β¦ Ξ£ π β β
π΅ ) ) |
16 |
13 15
|
eqeq12d |
β’ ( π = β
β ( ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) β ( π D ( π₯ β π β¦ Ξ£ π β β
π΄ ) ) = ( π₯ β π β¦ Ξ£ π β β
π΅ ) ) ) |
17 |
10 16
|
imbi12d |
β’ ( π = β
β ( ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( β
β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β β
π΄ ) ) = ( π₯ β π β¦ Ξ£ π β β
π΅ ) ) ) ) |
18 |
17
|
imbi2d |
β’ ( π = β
β ( ( π β ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π β ( β
β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β β
π΄ ) ) = ( π₯ β π β¦ Ξ£ π β β
π΅ ) ) ) ) ) |
19 |
|
sseq1 |
β’ ( π = π β ( π β πΌ β π β πΌ ) ) |
20 |
|
sumeq1 |
β’ ( π = π β Ξ£ π β π π΄ = Ξ£ π β π π΄ ) |
21 |
20
|
mpteq2dv |
β’ ( π = π β ( π₯ β π β¦ Ξ£ π β π π΄ ) = ( π₯ β π β¦ Ξ£ π β π π΄ ) ) |
22 |
21
|
oveq2d |
β’ ( π = π β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) ) |
23 |
|
sumeq1 |
β’ ( π = π β Ξ£ π β π π΅ = Ξ£ π β π π΅ ) |
24 |
23
|
mpteq2dv |
β’ ( π = π β ( π₯ β π β¦ Ξ£ π β π π΅ ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) |
25 |
22 24
|
eqeq12d |
β’ ( π = π β ( ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) |
26 |
19 25
|
imbi12d |
β’ ( π = π β ( ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) ) |
27 |
26
|
imbi2d |
β’ ( π = π β ( ( π β ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π β ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) ) ) |
28 |
|
sseq1 |
β’ ( π = ( π βͺ { π } ) β ( π β πΌ β ( π βͺ { π } ) β πΌ ) ) |
29 |
|
sumeq1 |
β’ ( π = ( π βͺ { π } ) β Ξ£ π β π π΄ = Ξ£ π β ( π βͺ { π } ) π΄ ) |
30 |
29
|
mpteq2dv |
β’ ( π = ( π βͺ { π } ) β ( π₯ β π β¦ Ξ£ π β π π΄ ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) |
31 |
30
|
oveq2d |
β’ ( π = ( π βͺ { π } ) β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) ) |
32 |
|
sumeq1 |
β’ ( π = ( π βͺ { π } ) β Ξ£ π β π π΅ = Ξ£ π β ( π βͺ { π } ) π΅ ) |
33 |
32
|
mpteq2dv |
β’ ( π = ( π βͺ { π } ) β ( π₯ β π β¦ Ξ£ π β π π΅ ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) |
34 |
31 33
|
eqeq12d |
β’ ( π = ( π βͺ { π } ) β ( ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) |
35 |
28 34
|
imbi12d |
β’ ( π = ( π βͺ { π } ) β ( ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) ) |
36 |
35
|
imbi2d |
β’ ( π = ( π βͺ { π } ) β ( ( π β ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π β ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) ) ) |
37 |
|
sseq1 |
β’ ( π = πΌ β ( π β πΌ β πΌ β πΌ ) ) |
38 |
|
sumeq1 |
β’ ( π = πΌ β Ξ£ π β π π΄ = Ξ£ π β πΌ π΄ ) |
39 |
38
|
mpteq2dv |
β’ ( π = πΌ β ( π₯ β π β¦ Ξ£ π β π π΄ ) = ( π₯ β π β¦ Ξ£ π β πΌ π΄ ) ) |
40 |
39
|
oveq2d |
β’ ( π = πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π D ( π₯ β π β¦ Ξ£ π β πΌ π΄ ) ) ) |
41 |
|
sumeq1 |
β’ ( π = πΌ β Ξ£ π β π π΅ = Ξ£ π β πΌ π΅ ) |
42 |
41
|
mpteq2dv |
β’ ( π = πΌ β ( π₯ β π β¦ Ξ£ π β π π΅ ) = ( π₯ β π β¦ Ξ£ π β πΌ π΅ ) ) |
43 |
40 42
|
eqeq12d |
β’ ( π = πΌ β ( ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) β ( π D ( π₯ β π β¦ Ξ£ π β πΌ π΄ ) ) = ( π₯ β π β¦ Ξ£ π β πΌ π΅ ) ) ) |
44 |
37 43
|
imbi12d |
β’ ( π = πΌ β ( ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( πΌ β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β πΌ π΄ ) ) = ( π₯ β π β¦ Ξ£ π β πΌ π΅ ) ) ) ) |
45 |
44
|
imbi2d |
β’ ( π = πΌ β ( ( π β ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π β ( πΌ β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β πΌ π΄ ) ) = ( π₯ β π β¦ Ξ£ π β πΌ π΅ ) ) ) ) ) |
46 |
|
0cnd |
β’ ( ( π β§ π₯ β π ) β 0 β β ) |
47 |
|
0cnd |
β’ ( π β 0 β β ) |
48 |
3 47
|
dvmptc |
β’ ( π β ( π D ( π₯ β π β¦ 0 ) ) = ( π₯ β π β¦ 0 ) ) |
49 |
2
|
cnfldtopon |
β’ πΎ β ( TopOn β β ) |
50 |
|
recnprss |
β’ ( π β { β , β } β π β β ) |
51 |
3 50
|
syl |
β’ ( π β π β β ) |
52 |
|
resttopon |
β’ ( ( πΎ β ( TopOn β β ) β§ π β β ) β ( πΎ βΎt π ) β ( TopOn β π ) ) |
53 |
49 51 52
|
sylancr |
β’ ( π β ( πΎ βΎt π ) β ( TopOn β π ) ) |
54 |
1 53
|
eqeltrid |
β’ ( π β π½ β ( TopOn β π ) ) |
55 |
|
toponss |
β’ ( ( π½ β ( TopOn β π ) β§ π β π½ ) β π β π ) |
56 |
54 4 55
|
syl2anc |
β’ ( π β π β π ) |
57 |
3 46 46 48 56 1 2 4
|
dvmptres |
β’ ( π β ( π D ( π₯ β π β¦ 0 ) ) = ( π₯ β π β¦ 0 ) ) |
58 |
|
sum0 |
β’ Ξ£ π β β
π΄ = 0 |
59 |
58
|
mpteq2i |
β’ ( π₯ β π β¦ Ξ£ π β β
π΄ ) = ( π₯ β π β¦ 0 ) |
60 |
59
|
oveq2i |
β’ ( π D ( π₯ β π β¦ Ξ£ π β β
π΄ ) ) = ( π D ( π₯ β π β¦ 0 ) ) |
61 |
|
sum0 |
β’ Ξ£ π β β
π΅ = 0 |
62 |
61
|
mpteq2i |
β’ ( π₯ β π β¦ Ξ£ π β β
π΅ ) = ( π₯ β π β¦ 0 ) |
63 |
57 60 62
|
3eqtr4g |
β’ ( π β ( π D ( π₯ β π β¦ Ξ£ π β β
π΄ ) ) = ( π₯ β π β¦ Ξ£ π β β
π΅ ) ) |
64 |
63
|
a1d |
β’ ( π β ( β
β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β β
π΄ ) ) = ( π₯ β π β¦ Ξ£ π β β
π΅ ) ) ) |
65 |
|
ssun1 |
β’ π β ( π βͺ { π } ) |
66 |
|
sstr |
β’ ( ( π β ( π βͺ { π } ) β§ ( π βͺ { π } ) β πΌ ) β π β πΌ ) |
67 |
65 66
|
mpan |
β’ ( ( π βͺ { π } ) β πΌ β π β πΌ ) |
68 |
67
|
imim1i |
β’ ( ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) |
69 |
|
simpll |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β π ) |
70 |
69 3
|
syl |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β π β { β , β } ) |
71 |
5
|
ad3antrrr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β πΌ β Fin ) |
72 |
67
|
ad2antlr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β π β πΌ ) |
73 |
71 72
|
ssfid |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β π β Fin ) |
74 |
|
simp-4l |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β π ) β π ) |
75 |
72
|
sselda |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β π ) β π β πΌ ) |
76 |
|
simplr |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β π ) β π β π ) |
77 |
|
nfv |
β’ β² π₯ ( π β§ π β πΌ β§ π β π ) |
78 |
|
nfcsb1v |
β’ β² π₯ β¦ π / π₯ β¦ π΄ |
79 |
78
|
nfel1 |
β’ β² π₯ β¦ π / π₯ β¦ π΄ β β |
80 |
77 79
|
nfim |
β’ β² π₯ ( ( π β§ π β πΌ β§ π β π ) β β¦ π / π₯ β¦ π΄ β β ) |
81 |
|
eleq1w |
β’ ( π₯ = π β ( π₯ β π β π β π ) ) |
82 |
81
|
3anbi3d |
β’ ( π₯ = π β ( ( π β§ π β πΌ β§ π₯ β π ) β ( π β§ π β πΌ β§ π β π ) ) ) |
83 |
|
csbeq1a |
β’ ( π₯ = π β π΄ = β¦ π / π₯ β¦ π΄ ) |
84 |
83
|
eleq1d |
β’ ( π₯ = π β ( π΄ β β β β¦ π / π₯ β¦ π΄ β β ) ) |
85 |
82 84
|
imbi12d |
β’ ( π₯ = π β ( ( ( π β§ π β πΌ β§ π₯ β π ) β π΄ β β ) β ( ( π β§ π β πΌ β§ π β π ) β β¦ π / π₯ β¦ π΄ β β ) ) ) |
86 |
80 85 6
|
chvarfv |
β’ ( ( π β§ π β πΌ β§ π β π ) β β¦ π / π₯ β¦ π΄ β β ) |
87 |
74 75 76 86
|
syl3anc |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β π ) β β¦ π / π₯ β¦ π΄ β β ) |
88 |
73 87
|
fsumcl |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β Ξ£ π β π β¦ π / π₯ β¦ π΄ β β ) |
89 |
88
|
adantlrr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β§ π β π ) β Ξ£ π β π β¦ π / π₯ β¦ π΄ β β ) |
90 |
|
sumex |
β’ Ξ£ π β π β¦ π / π₯ β¦ π΅ β V |
91 |
90
|
a1i |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β§ π β π ) β Ξ£ π β π β¦ π / π₯ β¦ π΅ β V ) |
92 |
|
nfcv |
β’ β² π Ξ£ π β π π΄ |
93 |
|
nfcv |
β’ β² π₯ π |
94 |
93 78
|
nfsum |
β’ β² π₯ Ξ£ π β π β¦ π / π₯ β¦ π΄ |
95 |
83
|
sumeq2sdv |
β’ ( π₯ = π β Ξ£ π β π π΄ = Ξ£ π β π β¦ π / π₯ β¦ π΄ ) |
96 |
92 94 95
|
cbvmpt |
β’ ( π₯ β π β¦ Ξ£ π β π π΄ ) = ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΄ ) |
97 |
96
|
oveq2i |
β’ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π D ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΄ ) ) |
98 |
|
nfcv |
β’ β² π Ξ£ π β π π΅ |
99 |
|
nfcsb1v |
β’ β² π₯ β¦ π / π₯ β¦ π΅ |
100 |
93 99
|
nfsum |
β’ β² π₯ Ξ£ π β π β¦ π / π₯ β¦ π΅ |
101 |
|
csbeq1a |
β’ ( π₯ = π β π΅ = β¦ π / π₯ β¦ π΅ ) |
102 |
101
|
sumeq2sdv |
β’ ( π₯ = π β Ξ£ π β π π΅ = Ξ£ π β π β¦ π / π₯ β¦ π΅ ) |
103 |
98 100 102
|
cbvmpt |
β’ ( π₯ β π β¦ Ξ£ π β π π΅ ) = ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΅ ) |
104 |
97 103
|
eqeq12i |
β’ ( ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) β ( π D ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΄ ) ) = ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΅ ) ) |
105 |
104
|
biimpi |
β’ ( ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) β ( π D ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΄ ) ) = ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΅ ) ) |
106 |
105
|
ad2antll |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π D ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΄ ) ) = ( π β π β¦ Ξ£ π β π β¦ π / π₯ β¦ π΅ ) ) |
107 |
|
simplll |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β π ) |
108 |
|
ssun2 |
β’ { π } β ( π βͺ { π } ) |
109 |
|
sstr |
β’ ( ( { π } β ( π βͺ { π } ) β§ ( π βͺ { π } ) β πΌ ) β { π } β πΌ ) |
110 |
108 109
|
mpan |
β’ ( ( π βͺ { π } ) β πΌ β { π } β πΌ ) |
111 |
|
vex |
β’ π β V |
112 |
111
|
snss |
β’ ( π β πΌ β { π } β πΌ ) |
113 |
110 112
|
sylibr |
β’ ( ( π βͺ { π } ) β πΌ β π β πΌ ) |
114 |
113
|
ad2antlr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β π β πΌ ) |
115 |
|
simpr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β π β π ) |
116 |
6
|
3expb |
β’ ( ( π β§ ( π β πΌ β§ π₯ β π ) ) β π΄ β β ) |
117 |
116
|
ancom2s |
β’ ( ( π β§ ( π₯ β π β§ π β πΌ ) ) β π΄ β β ) |
118 |
117
|
ralrimivva |
β’ ( π β β π₯ β π β π β πΌ π΄ β β ) |
119 |
|
nfcsb1v |
β’ β² π β¦ π / π β¦ β¦ π / π₯ β¦ π΄ |
120 |
119
|
nfel1 |
β’ β² π β¦ π / π β¦ β¦ π / π₯ β¦ π΄ β β |
121 |
|
csbeq1a |
β’ ( π = π β β¦ π / π₯ β¦ π΄ = β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) |
122 |
121
|
eleq1d |
β’ ( π = π β ( β¦ π / π₯ β¦ π΄ β β β β¦ π / π β¦ β¦ π / π₯ β¦ π΄ β β ) ) |
123 |
79 120 84 122
|
rspc2 |
β’ ( ( π β π β§ π β πΌ ) β ( β π₯ β π β π β πΌ π΄ β β β β¦ π / π β¦ β¦ π / π₯ β¦ π΄ β β ) ) |
124 |
123
|
ancoms |
β’ ( ( π β πΌ β§ π β π ) β ( β π₯ β π β π β πΌ π΄ β β β β¦ π / π β¦ β¦ π / π₯ β¦ π΄ β β ) ) |
125 |
118 124
|
mpan9 |
β’ ( ( π β§ ( π β πΌ β§ π β π ) ) β β¦ π / π β¦ β¦ π / π₯ β¦ π΄ β β ) |
126 |
107 114 115 125
|
syl12anc |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β β¦ π / π β¦ β¦ π / π₯ β¦ π΄ β β ) |
127 |
126
|
adantlrr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β§ π β π ) β β¦ π / π β¦ β¦ π / π₯ β¦ π΄ β β ) |
128 |
7
|
3expb |
β’ ( ( π β§ ( π β πΌ β§ π₯ β π ) ) β π΅ β β ) |
129 |
128
|
ancom2s |
β’ ( ( π β§ ( π₯ β π β§ π β πΌ ) ) β π΅ β β ) |
130 |
129
|
ralrimivva |
β’ ( π β β π₯ β π β π β πΌ π΅ β β ) |
131 |
99
|
nfel1 |
β’ β² π₯ β¦ π / π₯ β¦ π΅ β β |
132 |
|
nfcsb1v |
β’ β² π β¦ π / π β¦ β¦ π / π₯ β¦ π΅ |
133 |
132
|
nfel1 |
β’ β² π β¦ π / π β¦ β¦ π / π₯ β¦ π΅ β β |
134 |
101
|
eleq1d |
β’ ( π₯ = π β ( π΅ β β β β¦ π / π₯ β¦ π΅ β β ) ) |
135 |
|
csbeq1a |
β’ ( π = π β β¦ π / π₯ β¦ π΅ = β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) |
136 |
135
|
eleq1d |
β’ ( π = π β ( β¦ π / π₯ β¦ π΅ β β β β¦ π / π β¦ β¦ π / π₯ β¦ π΅ β β ) ) |
137 |
131 133 134 136
|
rspc2 |
β’ ( ( π β π β§ π β πΌ ) β ( β π₯ β π β π β πΌ π΅ β β β β¦ π / π β¦ β¦ π / π₯ β¦ π΅ β β ) ) |
138 |
137
|
ancoms |
β’ ( ( π β πΌ β§ π β π ) β ( β π₯ β π β π β πΌ π΅ β β β β¦ π / π β¦ β¦ π / π₯ β¦ π΅ β β ) ) |
139 |
130 138
|
mpan9 |
β’ ( ( π β§ ( π β πΌ β§ π β π ) ) β β¦ π / π β¦ β¦ π / π₯ β¦ π΅ β β ) |
140 |
107 114 115 139
|
syl12anc |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β β¦ π / π β¦ β¦ π / π₯ β¦ π΅ β β ) |
141 |
140
|
adantlrr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β§ π β π ) β β¦ π / π β¦ β¦ π / π₯ β¦ π΅ β β ) |
142 |
113
|
ad2antrl |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β π β πΌ ) |
143 |
|
nfv |
β’ β² π ( π β§ π β πΌ ) |
144 |
|
nfcv |
β’ β² π π |
145 |
|
nfcv |
β’ β² π D |
146 |
|
nfcv |
β’ β² π π |
147 |
|
nfcsb1v |
β’ β² π β¦ π / π β¦ π΄ |
148 |
146 147
|
nfmpt |
β’ β² π ( π₯ β π β¦ β¦ π / π β¦ π΄ ) |
149 |
144 145 148
|
nfov |
β’ β² π ( π D ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) |
150 |
|
nfcsb1v |
β’ β² π β¦ π / π β¦ π΅ |
151 |
146 150
|
nfmpt |
β’ β² π ( π₯ β π β¦ β¦ π / π β¦ π΅ ) |
152 |
149 151
|
nfeq |
β’ β² π ( π D ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) = ( π₯ β π β¦ β¦ π / π β¦ π΅ ) |
153 |
143 152
|
nfim |
β’ β² π ( ( π β§ π β πΌ ) β ( π D ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) = ( π₯ β π β¦ β¦ π / π β¦ π΅ ) ) |
154 |
|
eleq1w |
β’ ( π = π β ( π β πΌ β π β πΌ ) ) |
155 |
154
|
anbi2d |
β’ ( π = π β ( ( π β§ π β πΌ ) β ( π β§ π β πΌ ) ) ) |
156 |
|
csbeq1a |
β’ ( π = π β π΄ = β¦ π / π β¦ π΄ ) |
157 |
156
|
mpteq2dv |
β’ ( π = π β ( π₯ β π β¦ π΄ ) = ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) |
158 |
157
|
oveq2d |
β’ ( π = π β ( π D ( π₯ β π β¦ π΄ ) ) = ( π D ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) ) |
159 |
|
csbeq1a |
β’ ( π = π β π΅ = β¦ π / π β¦ π΅ ) |
160 |
159
|
mpteq2dv |
β’ ( π = π β ( π₯ β π β¦ π΅ ) = ( π₯ β π β¦ β¦ π / π β¦ π΅ ) ) |
161 |
158 160
|
eqeq12d |
β’ ( π = π β ( ( π D ( π₯ β π β¦ π΄ ) ) = ( π₯ β π β¦ π΅ ) β ( π D ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) = ( π₯ β π β¦ β¦ π / π β¦ π΅ ) ) ) |
162 |
155 161
|
imbi12d |
β’ ( π = π β ( ( ( π β§ π β πΌ ) β ( π D ( π₯ β π β¦ π΄ ) ) = ( π₯ β π β¦ π΅ ) ) β ( ( π β§ π β πΌ ) β ( π D ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) = ( π₯ β π β¦ β¦ π / π β¦ π΅ ) ) ) ) |
163 |
153 162 8
|
chvarfv |
β’ ( ( π β§ π β πΌ ) β ( π D ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) = ( π₯ β π β¦ β¦ π / π β¦ π΅ ) ) |
164 |
|
nfcv |
β’ β² π β¦ π / π β¦ π΄ |
165 |
|
nfcv |
β’ β² π₯ π |
166 |
165 78
|
nfcsbw |
β’ β² π₯ β¦ π / π β¦ β¦ π / π₯ β¦ π΄ |
167 |
83
|
csbeq2dv |
β’ ( π₯ = π β β¦ π / π β¦ π΄ = β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) |
168 |
164 166 167
|
cbvmpt |
β’ ( π₯ β π β¦ β¦ π / π β¦ π΄ ) = ( π β π β¦ β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) |
169 |
168
|
oveq2i |
β’ ( π D ( π₯ β π β¦ β¦ π / π β¦ π΄ ) ) = ( π D ( π β π β¦ β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) |
170 |
|
nfcv |
β’ β² π β¦ π / π β¦ π΅ |
171 |
165 99
|
nfcsbw |
β’ β² π₯ β¦ π / π β¦ β¦ π / π₯ β¦ π΅ |
172 |
101
|
csbeq2dv |
β’ ( π₯ = π β β¦ π / π β¦ π΅ = β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) |
173 |
170 171 172
|
cbvmpt |
β’ ( π₯ β π β¦ β¦ π / π β¦ π΅ ) = ( π β π β¦ β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) |
174 |
163 169 173
|
3eqtr3g |
β’ ( ( π β§ π β πΌ ) β ( π D ( π β π β¦ β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) = ( π β π β¦ β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) ) |
175 |
69 142 174
|
syl2anc |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π D ( π β π β¦ β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) = ( π β π β¦ β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) ) |
176 |
70 89 91 106 127 141 175
|
dvmptadd |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π D ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) ) = ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΅ + β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) ) ) |
177 |
|
nfcv |
β’ β² π Ξ£ π β ( π βͺ { π } ) π΄ |
178 |
|
nfcv |
β’ β² π₯ ( π βͺ { π } ) |
179 |
178 78
|
nfsum |
β’ β² π₯ Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΄ |
180 |
83
|
sumeq2sdv |
β’ ( π₯ = π β Ξ£ π β ( π βͺ { π } ) π΄ = Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΄ ) |
181 |
177 179 180
|
cbvmpt |
β’ ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) = ( π β π β¦ Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΄ ) |
182 |
|
simpllr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β Β¬ π β π ) |
183 |
|
disjsn |
β’ ( ( π β© { π } ) = β
β Β¬ π β π ) |
184 |
182 183
|
sylibr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β ( π β© { π } ) = β
) |
185 |
|
eqidd |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β ( π βͺ { π } ) = ( π βͺ { π } ) ) |
186 |
|
simplr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β ( π βͺ { π } ) β πΌ ) |
187 |
71 186
|
ssfid |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β ( π βͺ { π } ) β Fin ) |
188 |
|
simp-4l |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β ( π βͺ { π } ) ) β π ) |
189 |
186
|
sselda |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β ( π βͺ { π } ) ) β π β πΌ ) |
190 |
|
simplr |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β ( π βͺ { π } ) ) β π β π ) |
191 |
188 189 190 86
|
syl3anc |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β ( π βͺ { π } ) ) β β¦ π / π₯ β¦ π΄ β β ) |
192 |
184 185 187 191
|
fsumsplit |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΄ = ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + Ξ£ π β { π } β¦ π / π₯ β¦ π΄ ) ) |
193 |
|
sumsns |
β’ ( ( π β V β§ β¦ π / π β¦ β¦ π / π₯ β¦ π΄ β β ) β Ξ£ π β { π } β¦ π / π₯ β¦ π΄ = β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) |
194 |
111 126 193
|
sylancr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β Ξ£ π β { π } β¦ π / π₯ β¦ π΄ = β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) |
195 |
194
|
oveq2d |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + Ξ£ π β { π } β¦ π / π₯ β¦ π΄ ) = ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) |
196 |
192 195
|
eqtrd |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΄ = ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) |
197 |
196
|
mpteq2dva |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β ( π β π β¦ Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΄ ) = ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) ) |
198 |
181 197
|
eqtrid |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) = ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) ) |
199 |
198
|
adantrr |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) = ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) ) |
200 |
199
|
oveq2d |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π D ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΄ + β¦ π / π β¦ β¦ π / π₯ β¦ π΄ ) ) ) ) |
201 |
|
nfcv |
β’ β² π Ξ£ π β ( π βͺ { π } ) π΅ |
202 |
178 99
|
nfsum |
β’ β² π₯ Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΅ |
203 |
101
|
sumeq2sdv |
β’ ( π₯ = π β Ξ£ π β ( π βͺ { π } ) π΅ = Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΅ ) |
204 |
201 202 203
|
cbvmpt |
β’ ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) = ( π β π β¦ Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΅ ) |
205 |
77 131
|
nfim |
β’ β² π₯ ( ( π β§ π β πΌ β§ π β π ) β β¦ π / π₯ β¦ π΅ β β ) |
206 |
82 134
|
imbi12d |
β’ ( π₯ = π β ( ( ( π β§ π β πΌ β§ π₯ β π ) β π΅ β β ) β ( ( π β§ π β πΌ β§ π β π ) β β¦ π / π₯ β¦ π΅ β β ) ) ) |
207 |
205 206 7
|
chvarfv |
β’ ( ( π β§ π β πΌ β§ π β π ) β β¦ π / π₯ β¦ π΅ β β ) |
208 |
188 189 190 207
|
syl3anc |
β’ ( ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β§ π β ( π βͺ { π } ) ) β β¦ π / π₯ β¦ π΅ β β ) |
209 |
184 185 187 208
|
fsumsplit |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΅ = ( Ξ£ π β π β¦ π / π₯ β¦ π΅ + Ξ£ π β { π } β¦ π / π₯ β¦ π΅ ) ) |
210 |
|
sumsns |
β’ ( ( π β V β§ β¦ π / π β¦ β¦ π / π₯ β¦ π΅ β β ) β Ξ£ π β { π } β¦ π / π₯ β¦ π΅ = β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) |
211 |
111 140 210
|
sylancr |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β Ξ£ π β { π } β¦ π / π₯ β¦ π΅ = β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) |
212 |
211
|
oveq2d |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β ( Ξ£ π β π β¦ π / π₯ β¦ π΅ + Ξ£ π β { π } β¦ π / π₯ β¦ π΅ ) = ( Ξ£ π β π β¦ π / π₯ β¦ π΅ + β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) ) |
213 |
209 212
|
eqtrd |
β’ ( ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β§ π β π ) β Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΅ = ( Ξ£ π β π β¦ π / π₯ β¦ π΅ + β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) ) |
214 |
213
|
mpteq2dva |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β ( π β π β¦ Ξ£ π β ( π βͺ { π } ) β¦ π / π₯ β¦ π΅ ) = ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΅ + β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) ) ) |
215 |
204 214
|
eqtrid |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( π βͺ { π } ) β πΌ ) β ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) = ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΅ + β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) ) ) |
216 |
215
|
adantrr |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) = ( π β π β¦ ( Ξ£ π β π β¦ π / π₯ β¦ π΅ + β¦ π / π β¦ β¦ π / π₯ β¦ π΅ ) ) ) |
217 |
176 200 216
|
3eqtr4d |
β’ ( ( ( π β§ Β¬ π β π ) β§ ( ( π βͺ { π } ) β πΌ β§ ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) |
218 |
217
|
exp32 |
β’ ( ( π β§ Β¬ π β π ) β ( ( π βͺ { π } ) β πΌ β ( ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) ) |
219 |
218
|
a2d |
β’ ( ( π β§ Β¬ π β π ) β ( ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) ) |
220 |
68 219
|
syl5 |
β’ ( ( π β§ Β¬ π β π ) β ( ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) ) |
221 |
220
|
expcom |
β’ ( Β¬ π β π β ( π β ( ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) ) ) |
222 |
221
|
adantl |
β’ ( ( π β Fin β§ Β¬ π β π ) β ( π β ( ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) β ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) ) ) |
223 |
222
|
a2d |
β’ ( ( π β Fin β§ Β¬ π β π ) β ( ( π β ( π β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β π π΄ ) ) = ( π₯ β π β¦ Ξ£ π β π π΅ ) ) ) β ( π β ( ( π βͺ { π } ) β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΄ ) ) = ( π₯ β π β¦ Ξ£ π β ( π βͺ { π } ) π΅ ) ) ) ) ) |
224 |
18 27 36 45 64 223
|
findcard2s |
β’ ( πΌ β Fin β ( π β ( πΌ β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β πΌ π΄ ) ) = ( π₯ β π β¦ Ξ£ π β πΌ π΅ ) ) ) ) |
225 |
5 224
|
mpcom |
β’ ( π β ( πΌ β πΌ β ( π D ( π₯ β π β¦ Ξ£ π β πΌ π΄ ) ) = ( π₯ β π β¦ Ξ£ π β πΌ π΅ ) ) ) |
226 |
9 225
|
mpi |
β’ ( π β ( π D ( π₯ β π β¦ Ξ£ π β πΌ π΄ ) ) = ( π₯ β π β¦ Ξ£ π β πΌ π΅ ) ) |