| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem3.n |
|- ( ph -> P e. NN ) |
| 2 |
|
etransclem3.c |
|- ( ph -> C : ( 0 ... M ) --> ( 0 ... N ) ) |
| 3 |
|
etransclem3.j |
|- ( ph -> J e. ( 0 ... M ) ) |
| 4 |
|
etransclem3.4 |
|- ( ph -> K e. ZZ ) |
| 5 |
|
0zd |
|- ( ( ph /\ P < ( C ` J ) ) -> 0 e. ZZ ) |
| 6 |
|
0zd |
|- ( ( ph /\ -. P < ( C ` J ) ) -> 0 e. ZZ ) |
| 7 |
1
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> P e. ZZ ) |
| 9 |
2 3
|
ffvelcdmd |
|- ( ph -> ( C ` J ) e. ( 0 ... N ) ) |
| 10 |
9
|
elfzelzd |
|- ( ph -> ( C ` J ) e. ZZ ) |
| 11 |
7 10
|
zsubcld |
|- ( ph -> ( P - ( C ` J ) ) e. ZZ ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( P - ( C ` J ) ) e. ZZ ) |
| 13 |
10
|
zred |
|- ( ph -> ( C ` J ) e. RR ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( C ` J ) e. RR ) |
| 15 |
8
|
zred |
|- ( ( ph /\ -. P < ( C ` J ) ) -> P e. RR ) |
| 16 |
|
simpr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> -. P < ( C ` J ) ) |
| 17 |
14 15 16
|
nltled |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( C ` J ) <_ P ) |
| 18 |
15 14
|
subge0d |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( 0 <_ ( P - ( C ` J ) ) <-> ( C ` J ) <_ P ) ) |
| 19 |
17 18
|
mpbird |
|- ( ( ph /\ -. P < ( C ` J ) ) -> 0 <_ ( P - ( C ` J ) ) ) |
| 20 |
|
elfzle1 |
|- ( ( C ` J ) e. ( 0 ... N ) -> 0 <_ ( C ` J ) ) |
| 21 |
9 20
|
syl |
|- ( ph -> 0 <_ ( C ` J ) ) |
| 22 |
1
|
nnred |
|- ( ph -> P e. RR ) |
| 23 |
22 13
|
subge02d |
|- ( ph -> ( 0 <_ ( C ` J ) <-> ( P - ( C ` J ) ) <_ P ) ) |
| 24 |
21 23
|
mpbid |
|- ( ph -> ( P - ( C ` J ) ) <_ P ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( P - ( C ` J ) ) <_ P ) |
| 26 |
6 8 12 19 25
|
elfzd |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( P - ( C ` J ) ) e. ( 0 ... P ) ) |
| 27 |
|
permnn |
|- ( ( P - ( C ` J ) ) e. ( 0 ... P ) -> ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) e. NN ) |
| 28 |
26 27
|
syl |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) e. NN ) |
| 29 |
28
|
nnzd |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) e. ZZ ) |
| 30 |
3
|
elfzelzd |
|- ( ph -> J e. ZZ ) |
| 31 |
4 30
|
zsubcld |
|- ( ph -> ( K - J ) e. ZZ ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( K - J ) e. ZZ ) |
| 33 |
|
elnn0z |
|- ( ( P - ( C ` J ) ) e. NN0 <-> ( ( P - ( C ` J ) ) e. ZZ /\ 0 <_ ( P - ( C ` J ) ) ) ) |
| 34 |
12 19 33
|
sylanbrc |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( P - ( C ` J ) ) e. NN0 ) |
| 35 |
|
zexpcl |
|- ( ( ( K - J ) e. ZZ /\ ( P - ( C ` J ) ) e. NN0 ) -> ( ( K - J ) ^ ( P - ( C ` J ) ) ) e. ZZ ) |
| 36 |
32 34 35
|
syl2anc |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( ( K - J ) ^ ( P - ( C ` J ) ) ) e. ZZ ) |
| 37 |
29 36
|
zmulcld |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) x. ( ( K - J ) ^ ( P - ( C ` J ) ) ) ) e. ZZ ) |
| 38 |
5 37
|
ifclda |
|- ( ph -> if ( P < ( C ` J ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) x. ( ( K - J ) ^ ( P - ( C ` J ) ) ) ) ) e. ZZ ) |