| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem1.x | ⊢ ( 𝜑  →  𝑋  ⊆  ℂ ) | 
						
							| 2 |  | etransclem1.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 3 |  | etransclem1.h | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 4 |  | etransclem1.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 5 | 1 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  ℂ ) | 
						
							| 6 | 4 | elfzelzd | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 7 | 6 | zcnd | ⊢ ( 𝜑  →  𝐽  ∈  ℂ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐽  ∈  ℂ ) | 
						
							| 9 | 5 8 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥  −  𝐽 )  ∈  ℂ ) | 
						
							| 10 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 12 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 13 | 11 12 | ifcld | ⊢ ( 𝜑  →  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 15 | 9 14 | expcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  ℂ ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 17 | 15 16 | fmptd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑗  =  𝑛  →  ( 𝑥  −  𝑗 )  =  ( 𝑥  −  𝑛 ) ) | 
						
							| 19 |  | eqeq1 | ⊢ ( 𝑗  =  𝑛  →  ( 𝑗  =  0  ↔  𝑛  =  0 ) ) | 
						
							| 20 | 19 | ifbid | ⊢ ( 𝑗  =  𝑛  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  if ( 𝑛  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( 𝑗  =  𝑛  →  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑥  −  𝑛 ) ↑ if ( 𝑛  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 22 | 21 | mpteq2dv | ⊢ ( 𝑗  =  𝑛  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑛 ) ↑ if ( 𝑛  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 23 | 22 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑛  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑛 ) ↑ if ( 𝑛  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 24 | 3 23 | eqtri | ⊢ 𝐻  =  ( 𝑛  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑛 ) ↑ if ( 𝑛  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑛  =  𝐽  →  ( 𝑥  −  𝑛 )  =  ( 𝑥  −  𝐽 ) ) | 
						
							| 26 |  | eqeq1 | ⊢ ( 𝑛  =  𝐽  →  ( 𝑛  =  0  ↔  𝐽  =  0 ) ) | 
						
							| 27 | 26 | ifbid | ⊢ ( 𝑛  =  𝐽  →  if ( 𝑛  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 28 | 25 27 | oveq12d | ⊢ ( 𝑛  =  𝐽  →  ( ( 𝑥  −  𝑛 ) ↑ if ( 𝑛  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 29 | 28 | mpteq2dv | ⊢ ( 𝑛  =  𝐽  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑛 ) ↑ if ( 𝑛  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 30 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 31 | 30 | ssex | ⊢ ( 𝑋  ⊆  ℂ  →  𝑋  ∈  V ) | 
						
							| 32 |  | mptexg | ⊢ ( 𝑋  ∈  V  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V ) | 
						
							| 33 | 1 31 32 | 3syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V ) | 
						
							| 34 | 24 29 4 33 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝐽 )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 35 | 34 | feq1d | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝐽 ) : 𝑋 ⟶ ℂ  ↔  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝐽 ) ↑ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 36 | 17 35 | mpbird | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝐽 ) : 𝑋 ⟶ ℂ ) |