Metamath Proof Explorer


Theorem etransclem5

Description: A change of bound variable, often used in proofs for etransc . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion etransclem5 j0MxXxjifj=0P1P=k0MyXykifk=0P1P

Proof

Step Hyp Ref Expression
1 oveq1 x=yxj=yj
2 1 oveq1d x=yxjifj=0P1P=yjifj=0P1P
3 2 cbvmptv xXxjifj=0P1P=yXyjifj=0P1P
4 oveq2 j=kyj=yk
5 eqeq1 j=kj=0k=0
6 5 ifbid j=kifj=0P1P=ifk=0P1P
7 4 6 oveq12d j=kyjifj=0P1P=ykifk=0P1P
8 7 mpteq2dv j=kyXyjifj=0P1P=yXykifk=0P1P
9 3 8 eqtrid j=kxXxjifj=0P1P=yXykifk=0P1P
10 9 cbvmptv j0MxXxjifj=0P1P=k0MyXykifk=0P1P