| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  −  𝑗 )  =  ( 𝑦  −  𝑗 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 3 | 2 | cbvmptv | ⊢ ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑦  −  𝑗 )  =  ( 𝑦  −  𝑘 ) ) | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  =  0  ↔  𝑘  =  0 ) ) | 
						
							| 6 | 5 | ifbid | ⊢ ( 𝑗  =  𝑘  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 7 | 4 6 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 8 | 7 | mpteq2dv | ⊢ ( 𝑗  =  𝑘  →  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 9 | 3 8 | eqtrid | ⊢ ( 𝑗  =  𝑘  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 10 | 9 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) |