Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 𝑗 ) = ( 𝑦 − 𝑗 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
3 |
2
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑦 − 𝑗 ) = ( 𝑦 − 𝑘 ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 = 0 ↔ 𝑘 = 0 ) ) |
6 |
5
|
ifbid |
⊢ ( 𝑗 = 𝑘 → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) = if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
7 |
4 6
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
8 |
7
|
mpteq2dv |
⊢ ( 𝑗 = 𝑘 → ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
9 |
3 8
|
eqtrid |
⊢ ( 𝑗 = 𝑘 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
10 |
9
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |