| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 ↑ ( 𝑃  −  1 ) )  =  ( 𝑦 ↑ ( 𝑃  −  1 ) ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑥  −  𝑗 )  =  ( 𝑥  −  𝑘 ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑥  −  𝑗 ) ↑ 𝑃 )  =  ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) | 
						
							| 4 | 3 | cbvprodv | ⊢ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  −  𝑘 )  =  ( 𝑦  −  𝑘 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  −  𝑘 ) ↑ 𝑃 )  =  ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) | 
						
							| 7 | 6 | prodeq2ad | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) | 
						
							| 8 | 4 7 | eqtrid | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) | 
						
							| 9 | 1 8 | oveq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) )  =  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 10 | 9 | cbvmptv | ⊢ ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) )  =  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) ) |