| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ ( 𝑃 − 1 ) ) = ( 𝑦 ↑ ( 𝑃 − 1 ) ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑥 − 𝑗 ) = ( 𝑥 − 𝑘 ) ) |
| 3 |
2
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) = ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) ) |
| 4 |
3
|
cbvprodv |
⊢ ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) = ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) |
| 5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 𝑘 ) = ( 𝑦 − 𝑘 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) = ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) |
| 7 |
6
|
prodeq2ad |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) = ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) |
| 8 |
4 7
|
eqtrid |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) = ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) |
| 9 |
1 8
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) = ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) ) |
| 10 |
9
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) ) |